タグ「傾き」の検索結果

5ページ目:全242問中41問~50問を表示)
岩手大学 国立 岩手大学 2015年 第5問
$2$つの関数$f(x)=x^3+x^2-5x$,$g(x)=x^3-2x^2+ax+b$について,曲線$y=f(x)$を$C_1$,曲線$y=g(x)$を$C_2$とする.ただし,$a,\ b$は定数である.

関数$f(x)$が極大となるときの$x$の値を$k$とし,点$(k,\ g(k))$における曲線$C_2$の接線の傾きは$-18$であるとする.
さらに,$2$つの曲線$C_1$,$C_2$はいずれもある$1$点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と点$\mathrm{P}$における$C_2$の接線が一致しているとき,次の問いに答えよ.

(1)$k$の値を求めよ.
(2)$a,\ b$の値をそれぞれ求めよ.
(3)直線$x=k$と$y$軸,および$2$曲線$C_1$,$C_2$によって囲まれた部分の面積を求めよ.
立教大学 私立 立教大学 2015年 第3問
$t$を正の実数とする.放物線$C_1:y=x^2+1$と放物線$C_2:y=-tx^2-1$の両方に接する直線のうち傾きが正であるものを$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)直線$\ell$と放物線$C_1$の接点を$\mathrm{P}$,直線$\ell$と放物線$C_2$の接点を$\mathrm{Q}$とする.点$\mathrm{P}$と点$\mathrm{Q}$の座標をそれぞれ$t$を用いて表せ.
(3)線分$\mathrm{PQ}$を$t:1$に内分する点$\mathrm{R}$の座標を$t$を用いて表せ.
(4)点$\mathrm{R}$の$y$座標がとりうる値の範囲を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$3$次関数$f(x)$は$x=0$で極小,$x=a>0$で極大になるとする.また$x=b (\neq a)$で$f(a)=f(b)$が成り立つとする.$x=b$における$y=f(x)$の接線が$y$軸と交わる点を$(0,\ c)$とおく.もし$3$点$(a,\ f(a))$,$(b,\ f(b))$,$(0,\ c)$を$3$頂点とする三角形が二等辺三角形になるならば,接線の傾きは
\[ -2 \sqrt{[$27$][$28$]} \quad\text{または}\quad -\sqrt{[$29$][$30$]} \]
であり,それぞれに対応して,$c$の値は
\[ c-f(a)=-\sqrt{[$31$][$32$]}a \quad\text{または}\quad -\frac{\sqrt{[$33$]}}{[$34$]}a \]
をみたす.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
$xy$平面上に放物線$\displaystyle P:y=\frac{1}{4}x^2$と直線$\displaystyle \ell:y=\frac{1}{2}x+\frac{1}{4}(a^2-1)$がある.ただし,$a$は$0<a<\sqrt{33}$を満たす実数である.$P$と$\ell$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$x_A$,$x_B$とおくと,$x_A<x_B$である.

次に,線分$\mathrm{AB}$を$1$辺とし,線分$\mathrm{CD}$が$(0,\ 8)$を通る長方形$\mathrm{ABDC}$をおく.長方形$\mathrm{ABDC}$の面積を$S(a)$とする.このとき,

(1)$2$点$\mathrm{C}$,$\mathrm{D}$を結ぶ直線の傾きは$\displaystyle \frac{[$40$]}{[$41$]}$であり,線分$\mathrm{AB}$の長さを$a$を用いて表すと$\sqrt{[$42$]}a$である.
(2)$S(a)$を$a$の式で表すと
\[ S(a)=\frac{[$43$][$44$]}{[$45$]}a^3+\frac{[$46$][$47$]}{[$48$]}a \]
である.
また,$S(a)$が最大値をとるとき,$a$の値は$\sqrt{[$49$][$50$]}$である.
(3)放物線$P$と直線$\ell$で囲まれた部分の面積が,$S(a)$の$3$倍であるとき,$a$の値は$[$51$] \sqrt{[$52$]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
放物線$C:y=ax^2-bx-c$は,点$\displaystyle \left( -\frac{1}{2},\ -1 \right)$を通り,この点における$C$の接線の傾きは$-14$であり,その軸は$\displaystyle x=\frac{1}{2}$であるという.このとき,
\[ a=[ア],\quad b=[イ],\quad c=\frac{[ウ][エ]}{[オ]} \]
である.$C$と$y$軸との交点における$C$の接線を$\ell$とすると,$\ell$の方程式は
\[ y=-[カ]x-\frac{[キ][ク]}{[ケ]} \]
となり,原点を通り$\ell$に平行な直線と$C$で囲まれる部分の面積は
\[ \frac{[コ][サ][シ]}{[ス][セ]} \sqrt{[ソ]} \]
となる.
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)座標平面上の円$C:(x-2)^2+(y-1)^2=5$に対して以下が成り立つ.

(i) $C$上の点で,その点における$C$の接線の傾きが$-2$となる点は$([ア],\ [イ])$と$([ウ],\ [エ])$である.(ただし,$[ア]<[ウ]$とする.)
(ii) 点$(x,\ y)$が$C$上を動くとき,$2x+y$の値は
$(x,\ y)=([オ],\ [カ])$のとき最大値$[キ][ク]$をとり,
$(x,\ y)=([ケ],\ [コ])$のとき最小値$[サ]$をとる.

(2)座標平面上で点$(x,\ y)$が$x^2-4 |x|+y^2-2 |y|=0$を満たしながら動くとき,$x^2+y^2$の値は$(x,\ y)=(0,\ 0)$のとき$0$になるが,それ以外の場合のとり得る値の範囲は
\[ [シ] \leqq x^2+y^2 \leqq [ス][セ] \]
である.
(3)座標平面上で$x^2-4 |x|+y^2-2 |y| \leqq 0$を満たす点$(x,\ y)$全体のなす領域を$S$とする.

(i) 点$(x,\ y)$が$S$上を動くとき,$x^2+y^2$のとり得る値の範囲は
\[ [ソ] \leqq x^2+y^2 \leqq [タ][チ] \]
である.
(ii) $S$の面積は$[ツ][テ]\pi+[ト][ナ]$である.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
甲南大学 私立 甲南大学 2015年 第2問
$k$を正の実数とする.直線$\displaystyle \ell:y=\frac{x}{\sqrt{3}}+k$は$x$軸と点$\mathrm{P}$で交わり,円$O:x^2+y^2=1$と$2$点$\mathrm{A}$,$\mathrm{B}$で交わる.ただし,$3$点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$は直線$\ell$上にこの順で並び,$\mathrm{AB}=1$である.このとき,以下の問いに答えよ.

(1)$k$の値を求めよ.また,点$\mathrm{P}$,$\mathrm{A}$,$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{P}$を通り円$O$に接する直線のうち傾きが負であるものを$m$とする.直線$m$の方程式を求めよ.また,直線$m$と円$O$の接点$\mathrm{C}$の座標を求めよ.
(3)$\mathrm{C}$を$(2)$で求めた点とする.三角形$\mathrm{ABC}$の面積を求めよ.
東京医科大学 私立 東京医科大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)ベクトル$\overrightarrow{a}=(2,\ 1)$,$\overrightarrow{b}=(4,\ 3)$,$\overrightarrow{c}=(3,\ 0)$,$\overrightarrow{d}=(1,\ 2)$に対して,等式
\[ |\overrightarrow{a}+t \overrightarrow{b}|=|\overrightarrow{c}+t \overrightarrow{d}| \]
をみたす実数$t$の値は$2$つあり,それらを$t_1,\ t_2 (t_1<t_2)$とすれば,
\[ t_1=[アイ],\quad t_2=\frac{[ウ]}{[エ]} \]
である.
(2)座標平面上の$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-(x-9)^2+28 \]
を考える.$C_1,\ C_2$の両方に接する直線は$2$つあり,それらの方程式を傾きの小さい方から順に並べれば,
\[ y=[オ]x-[カ],\quad y=[キク]x-[ケコ] \]
である.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。