タグ「傾き」の検索結果

4ページ目:全242問中31問~40問を表示)
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
点$\mathrm{P}(0,\ 4)$を通る傾き$\displaystyle \frac{1}{5}$の直線を$\ell$とし,曲線$y=|x(x-4)|$を$C$とする.

(1)$\ell$と$C$の第$1$象限における交点$\mathrm{Q}$を求めよ.
(2)$C$と線分$\mathrm{PQ}$および$y$軸で囲まれた部分の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第5問
$a$を定数とする.$2$曲線

$\displaystyle C_1:y=-\frac{3}{2} \cos 2x \quad (0<x<2\pi)$
$\displaystyle C_2:y=a \cos x-a-\frac{3}{4} \quad (0<x<2\pi)$

を考える.$C_1$と$C_2$は共有点をもち,ある共有点での$C_1$と$C_2$の接線は一致し,かつその傾きは$0$でないとする.次の問に答えよ.

(1)$a$の値を求めよ.
(2)$C_1$と$C_2$の概形を同一座標平面上にかけ.
(3)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
和歌山大学 国立 和歌山大学 2015年 第4問
放物線$\displaystyle C:y=\frac{1}{4}x^2$と点$\mathrm{P}(0,\ -4)$がある.直線$\ell,\ m,\ n$と点$\mathrm{Q}$を以下のように定める.

直線$\ell$は,$\mathrm{P}$から$C$に引いた接線のうち,傾きが正のものとし,その接点を$\mathrm{Q}$とする.
直線$m$は,$\mathrm{Q}$を通り,$\ell$に垂直なものとする.
直線$n$は,$m$と$C$の$\mathrm{Q}$以外の交点を通り,$y$軸に平行なものとする.

次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)直線$m$の方程式を求めよ.
(3)放物線$C$と$x$軸および直線$n$で囲まれた部分の面積$S$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第2問
$e$を自然対数の底とする.$xy$平面上で,曲線$y=e^{2x}$の,点$(t,\ e^{2t})$における接線を$\ell_t$とし,点$(s,\ e^{2s})$における接線を$\ell_s$とする.$\ell_s$の傾きが$\ell_t$の傾きの$e$倍に等しいとする.

(1)$\ell_t$と$\ell_s$の交点の座標を$t$を用いて表せ.
(2)$\ell_s$を,$y$軸に関して対称移動して得られる直線を$L$とする.$L$と直線$x=t$との交点を$\mathrm{P}_t$とする.$\mathrm{P}_t$の$y$座標を$t$を用いて表せ.
(3)$a$を正の実数とする.$t$が$0 \leqq t \leqq a$の範囲を動くとき,$(2)$で定めた点$\mathrm{P}_t$が描く曲線を$C$とする.$C$と$x$軸および直線$x=a$とで囲まれた図形の面積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2015年 第2問
関数$f(x)=ax^2+bx+c$を用いて,関数$g(x)$が
\[ g(x)=\left\{ \begin{array}{ll}
-ax^2+1 & \displaystyle\left( x<\frac{\sqrt{a}}{a} \right) \\
f(x) & \displaystyle\left( x \geqq \frac{\sqrt{a}}{a} \right) \phantom{\frac{[ ]^{\mkakko{}}}{2}}
\end{array} \right. \]
で定義されている.ただし,$a,\ b,\ c$は定数で,$a>0$とする.次の各問に答えなさい.

(1)関数$f(x)$の導関数を求めなさい.
(2)曲線$C_1:y=f(x)$は点$\displaystyle \left( \frac{\sqrt{a}}{a},\ 0 \right)$を通り,この点における曲線$C_1$の接線の傾きは$-2 \sqrt{a}$であるとする.

(i) $b$を$a$の式で表しなさい.また,$c$の値を求めなさい.
(ii) 関数$g(x)$が$x=4$で極小になるように,$a$の値を定めなさい.

(3)曲線$C_2:y=g(x)$は$2$点$(2,\ -1)$,$(3,\ 0)$を通る.また,曲線$C_2$と直線$L:y=tx$で囲まれる部分の面積を$t$の関数として$S(t)$で表す.ただし,$a=1$,$0 \leqq t \leqq 2$とする.このとき,$S(t)$の導関数の値は正である.

(i) $b,\ c$の値をそれぞれ求めなさい.
(ii) $S(t)$の最小値を求めなさい.
(iii) $S(t)$が最大値をとるとき,曲線$C_2$と直線$L$のすべての交点の座標を求めなさい.また,$S(t)$の最大値を求めなさい.
岩手大学 国立 岩手大学 2015年 第5問
$2$つの関数$f(x)=x^3+x^2-5x$,$g(x)=x^3-2x^2+ax+b$について,曲線$y=f(x)$を$C_1$,曲線$y=g(x)$を$C_2$とする.ただし,$a,\ b$は定数である.

関数$f(x)$が極大となるときの$x$の値を$k$とし,点$(k,\ g(k))$における曲線$C_2$の接線の傾きは$-18$であるとする.
さらに,$2$つの曲線$C_1$,$C_2$はいずれもある$1$点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と点$\mathrm{P}$における$C_2$の接線が一致しているとき,次の問いに答えよ.

(1)$k$の値を求めよ.
(2)$a,\ b$の値をそれぞれ求めよ.
(3)直線$x=k$と$y$軸,および$2$曲線$C_1$,$C_2$によって囲まれた部分の面積を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。