タグ「傾き」の検索結果

3ページ目:全242問中21問~30問を表示)
釧路公立大学 公立 釧路公立大学 2016年 第3問
次の問いに答えよ.

(1)次の指数方程式を解け.
\[ 3^{x+1}+3^{2-x}=12 \]
(2)$f(x)=x^3-4x^2-2x+5$とする.以下の問いに答えよ.

(i) 曲線$y=f(x)$上の点$(a,\ f(a))$における接線の傾きを,$a$を用いて表せ.
(ii) 曲線$y=f(x)$上の$2$点$(a,\ f(a))$,$(a+1,\ f(a+1))$における接線が平行になるとき,$a$の値を求めよ.
東京大学 国立 東京大学 2015年 第3問
$\ell$を座標平面上の原点を通り傾きが正の直線とする.さらに,以下の$3$条件$(ⅰ)$,$(ⅱ)$,$(ⅲ)$で定まる円$C_1$,$C_2$を考える.

(i) 円$C_1$,$C_2$は$2$つの不等式$x \geqq 0$,$y \geqq 0$で定まる領域に含まれる.
(ii) 円$C_1$,$C_2$は直線$\ell$と同一点で接する.
(iii) 円$C_1$は$x$軸と点$(1,\ 0)$で接し,円$C_2$は$y$軸と接する.

円$C_1$の半径を$r_1$,円$C_2$の半径を$r_2$とする.$8r_1+9r_2$が最小となるような直線$\ell$の方程式と,その最小値を求めよ.
(図は省略)
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
岡山大学 国立 岡山大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,上に凸であり,原点および点$\mathrm{Q}(a,\ 0)$を通るものとする.ただし,$0<a<1$である.関数$y=x^2$のグラフを$C$,関数$y=f(x)$のグラフを$D$とし,$C$と$D$の共有点のうち,原点と異なるものを$\mathrm{P}$とする.点$\mathrm{P}$における$C$の接線の傾きを$m$,$D$の接線の傾きを$n$とするとき
\[ (2a-1)m=2an \]
が成り立つとする.このとき,次の問いに答えよ.

(1)$f(x)$を$x$と$a$の式で表せ.
(2)$0 \leqq x \leqq a$の範囲で,曲線$D$と$x$軸で囲まれた図形の面積を$S(a)$とする.$S(a)$を$a$の式で表せ.
(3)$(2)$で求めた$S(a)$の$0<a<1$における最大値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2015年 第1問
次の問いに答えよ.

(1)$x \geqq 1$のとき,不等式$2 \sqrt{x}>1+\log x$が成り立つことを証明せよ.
(2)関数$y=x \log x (x>0)$のグラフを曲線$C$とする.定数$a$に対し,曲線$C$の接線で点$(a,\ 0)$を通るものは何本あるか.
(3)$(2)$で定められた曲線$C$とその傾き$2$の接線および直線$x=e^{-2}$で囲まれた部分の面積を求めよ.
東北大学 国立 東北大学 2015年 第2問
$xy$平面において,$3$次関数$y=x^3-x$のグラフを$C$とし,不等式
\[ x^3-x>y>-x \]
の表す領域を$D$とする.また,$\mathrm{P}$を$D$の点とする.

(1)$\mathrm{P}$を通り$C$に接する直線が$3$本存在することを示せ.
(2)$\mathrm{P}$を通り$C$に接する$3$本の直線の傾きの和と積がともに$0$となるような$\mathrm{P}$の座標を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.関数$f(t)=-4t^3+(a+3)t$の$0 \leqq t \leqq 1$における最大値を$M(a)$とする.

(1)$M(a)$を求めよ.
(2)実数$x>0$に対し,$g(x)=M(x)^2$とおく.$xy$平面において,関数$y=g(x)$のグラフに点$(s,\ g(s))$で接する直線が原点を通るとき,実数$s>0$とその接線の傾きを求めよ.
(3)$a$が正の実数全体を動くとき,
\[ k=\frac{M(a)}{\sqrt{a}} \]
の最小値を求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第1問
大小$2$つのさいころを投げ,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$a,\ b$に対し,$xy$平面上の曲線$y=x^3-ax$を$C$とし,$C$を$x$軸の正の方向に$b$だけ平行移動した曲線を$D$とする.次の問いに答えよ.

(1)$C$と$D$が異なる$2$点で交わる確率を求めよ.
(2)$C$と$D$が異なる$2$点で交わり,かつ,その$2$点を通る直線の傾きが正である確率を求めよ.
九州工業大学 国立 九州工業大学 2015年 第2問
座標平面上に原点を中心とする半径$1$の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ -1)$,$\mathrm{B}(0,\ -1)$があり,点$\mathrm{A}$を通る傾き$k$の直線$\ell$を考える.直線$\ell$は円$C$と異なる$2$点で交わるものとし,点 $\mathrm{A}$から遠い方の交点を$\mathrm{P}$,近い方の交点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$の座標をそれぞれ$k$を用いて表せ.
(3)三角形$\mathrm{BPQ}$の面積を$k$を用いて表せ.
(4)三角形$\mathrm{BPQ}$の面積を最大にする$k$を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
放物線$C:y=x^2$上に異なる$2$点$\mathrm{P}$,$\mathrm{Q}$をとる.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p$,$q$(ただし,$p<q$)とする.直線$\mathrm{PQ}$の傾きを$a$とおく.以下の問いに答えよ.

(1)$a$を$p,\ q$を用いて表せ.
(2)$a=1$とする.直線$\mathrm{PQ}$と$x$軸の正の向きとなす角$\theta_1$(ただし,$0<\theta_1<\pi$)を求めよ.
(3)$a=1$とする.放物線$C$上に点$\mathrm{R}$をとる.$\mathrm{R}$の$x$座標を$r$(ただし,$r<p$)とする.三角形$\mathrm{PQR}$が正三角形になるとき,直線$\mathrm{PR}$と$x$軸の正の向きとのなす角$\theta_2$(ただし,$0<\theta_2<\pi$)を求めよ.また,このとき直線$\mathrm{PR}$の傾き,および直線$\mathrm{QR}$の傾きを,それぞれ求めよ.さらに,正三角形$\mathrm{PQR}$の面積を求めよ.
(4)$a=2$とする.放物線$C$上に点$\mathrm{S}(1,\ 1)$をとる.三角形$\mathrm{PQS}$が$\displaystyle \angle \mathrm{S}=\frac{\pi}{2}$である直角三角形になるとき,この三角形の面積を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。