タグ「傾き」の検索結果

24ページ目:全242問中231問~240問を表示)
南山大学 私立 南山大学 2010年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$のとき,関数$y=\cos 2\theta-2 \sin \theta$の最大値とそのときの$\theta$の値を求めると$(y,\ \theta)=[ア]$であり,最小値とそのときの$\theta$の値を求めると$(y,\ \theta)=[イ]$である.
(2)実数$a,\ b$を係数とする方程式$x^3+ax^2+bx-4=0$の解の$1$つが$1-i$であるとき,残りの解のうち実数解を求めると$x=[ウ]$であり,$a,\ b$の値を求めると$(a,\ b)=[エ]$である.ただし,$i$は虚数単位である.
(3)$x$についての方程式$9^x-a \cdot 3^x+a^2-a=0$が$2$つの異なる実数解をもつとき,定数$a$のとりうる値の範囲は$[オ]$である.また,$x \geqq \sqrt{2}$,$y \geqq 1$,$x^2y=4$のとき,$(1+\log_2x)(\log_2y)$が最大値をとる$x,\ y$の値を求めると,$(x,\ y)=[カ]$である.
(4)座標平面上に中心が原点$\mathrm{O}$で半径が$3$の円$C$と,傾きが負で点$\mathrm{A}(5,\ 0)$を通る直線$\ell$を考える.$C$と$\ell$は$2$点$\mathrm{P}$,$\mathrm{Q}$($\mathrm{AP}<\mathrm{AQ}$)で交わるとする.$\angle \mathrm{POQ}$を$\theta$とするとき,$\triangle \mathrm{PQO}$の面積$S_1$を$\theta$を用いて表すと$S_1=[キ]$である.また,点$\mathrm{B}$の座標を$(-3,\ 0)$とするとき,$\triangle \mathrm{PQB}$の面積$S_2$の最大値は$[ク]$である.
広島国際学院大学 私立 広島国際学院大学 2010年 第3問
$2$点$(1,\ 2)$,$(3,\ -1)$を通る直線について,次の問いに答えなさい.

(1)この直線の傾きを求めなさい.
(2)この直線の方程式を求めなさい.
(3)この直線に垂直で,原点を通る直線の方程式を求めなさい.
(4)この直線に垂直に,$x$軸上で交わる直線の方程式を求めなさい.
北星学園大学 私立 北星学園大学 2010年 第1問
放物線$y=x^2+2ax+c$の頂点が,原点を通る傾き$-1$の直線上にある.以下の問に答えよ.

(1)放物線の$y$軸との交点の$y$座標の最小値を求めよ.
(2)$(1)$において,$x$軸との交点があればその座標を求めよ.交点のないときは「なし」と書け.
北海道科学大学 私立 北海道科学大学 2010年 第22問
$a$は実数の定数とする.円$x^2+y^2-ax-2y=0$上の点$(4,\ 2)$における接線を$\ell$とする.このとき,次の各問に答えよ.

(1)$a$の値を求めよ.
(2)この円の中心の座標と半径を求めよ.
(3)接線$\ell$の傾きを求めよ.
(4)接線$\ell$の方程式を求めよ.
日本女子大学 私立 日本女子大学 2010年 第3問
$a$を実数(ただし,$a$は$\displaystyle \frac{1}{\sqrt{3}}$にも,$\displaystyle -\frac{1}{\sqrt{3}}$にも等しくない)とする.$a_1=a$とし,数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.

放物線$\displaystyle C:y=\frac{1}{2}x^2$上の点$\displaystyle \mathrm{P}_n \left( a_n,\ \frac{1}{2} a_n^2 \right)$における$C$の接線を$\ell_n$とする.点$\displaystyle \mathrm{P}_{n+1} \left( a_{n+1},\ \frac{1}{2} a_{n+1}^2 \right)$における$C$の接線$\ell_{n+1}$の傾きは,$\mathrm{P}_n$を中心として$\ell_n$を正の向きに$60^\circ$回転した直線の傾きに等しい.

(1)$a_2$を$a$の式で表せ.
(2)$a_3$を$a$の式で表せ.
(3)$a_4$を$a$の式で表せ.
(4)$a_{14}$を$a$の式で表せ.
東京電機大学 私立 東京電機大学 2010年 第3問
正の定数$k$に対して,曲線$\displaystyle C:y=\frac{x^3}{3}$の接線で傾きが$k^2$のものを$\ell_1,\ \ell_2$とする.$C$と$\ell_1,\ \ell_2$の接点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ,第$1$,第$3$象限にあるとする.また,$C$と$\ell_1$との共有点のうち,$\mathrm{P}$でないものを$\mathrm{R}$とする.次の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$k$で表せ.
(2)線分$\mathrm{QR}$と$C$で囲まれた図形の面積$T$を$k$で表せ.
(3)$(2)$で求めた$T$が,$T<1$をみたすような$k$の値の範囲を求めよ.
獨協大学 私立 獨協大学 2010年 第3問
直線$\ell$と$m$が

直線$\ell$:$y=2x$
直線$m$:点$(2,\ 2)$を通る傾き$a$の直線(ただし,$a<0$)

と与えられているとき,以下の問題に答えよ.

(1)直線$\ell$と$m$の交点を$\mathrm{A}$としたとき,点$\mathrm{A}$の座標を求めよ.
(2)直線$m$と$x$軸の交点を$\mathrm{B}$としたとき,点$\mathrm{B}$の$x$座標を求めよ.
(3)原点を$\mathrm{O}$としたとき,三角形$\mathrm{AOB}$の面積$S$を求めよ.
(4)$(3)$で求めた面積$S$の値が$\displaystyle \frac{9}{2}$のとき直線$m$の傾き$a$の値を求めよ.
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.

(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
大阪市立大学 公立 大阪市立大学 2010年 第3問
$a,\ b$を正の実数とし,座標平面上の放物線$C : y = ax^2 +b$を考える.$t,\ s$は正の実数とし,点P$(t,\ at^2 +b)$における$C$の接線を$\ell_P$,点Q$(s,\ as^2 +b)$における$C$の接線を$\ell_Q$で表す.$\ell_P$は原点を通っているとする.次の問いに答えよ.

(1)$\ell_P$の傾きが1未満となるための必要十分条件を,$a$と$b$を用いて表せ.
(2)$\ell_P$の傾きは1未満とし,$\ell_P$と$x$軸がなす鋭角を$\theta$と表す.Qを$\ell_Q$と$x$軸のなす鋭角が$2\theta$になるようにとるとき,$\ell_Q$の傾きを$a$と$b$を用いて表せ.
(3)$a,\ b$が$\displaystyle a+b = \frac{1}{2}$をみたすとき,$\ell_P$の傾きは1未満であることを示せ.
(4)$a,\ b$は$\displaystyle a+b = \frac{1}{2}$をみたすものとし,Qを(2)のようにとる.$\ell_Q$の傾きが最大になるような$a,\ b$を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。