タグ「傾き」の検索結果

22ページ目:全242問中211問~220問を表示)
大同大学 私立 大同大学 2011年 第3問
原点$\mathrm{O}$を中心とする半径$3$の円を$C$とする.点$\mathrm{A}(5 \sqrt{2},\ 2 \sqrt{2})$を通り円$C$に接する直線で傾きが正のものを$\ell$とし,$C$と$\ell$の接点を$\mathrm{P}$とする.

(1)$\mathrm{OA}$,$\mathrm{AP}$を求めよ.
(2)直線$\mathrm{OA}$と$x$軸のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\angle \mathrm{OAP}=\beta$とおく.$\tan \alpha$,$\tan \beta$を求めよ.
(3)$\ell$の傾きを求めよ.
産業医科大学 私立 産業医科大学 2011年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)角$\theta$が$0^\circ \leqq \theta \leqq {90}^\circ$,$\displaystyle \tan \theta=\frac{4}{3}$を満たすとき,$\displaystyle \tan \frac{\theta}{2}$の値は$[ ]$である.
(2)$4$次方程式$2x^4+7x^3+4x^2+7x+2=0$の実数解のうち最大のものは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \{ \sqrt[3]{(n^3-n^2)^2}-2n \sqrt[3]{n^3-n^2}+n^2 \}$の値は$[ ]$である.
(4)円$x^2-8x+y^2-8y+30=0$に接する傾き$1$の$2$つの直線を$\ell_1$,$\ell_2$とする.放物線$y=2x^2+3x-2$と$2$直線$\ell_1$,$\ell_2$によって囲まれる図形の面積は$[ ]$である.ただし,この図形は原点を含むものとする.
(5)$x$を正の実数とするとき,関数$\displaystyle y=\left( \frac{2}{x} \right)^x$の導関数$\displaystyle \frac{dy}{dx}$は$[ ]$である.
(6)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \sqrt{1-2 \sin 2x+3 \cos^2 x} \, dx$の値は$[ ]$である.
(7)バスケットボールのフリースローを,$\mathrm{A}$,$\mathrm{B}$の$2$人がそれぞれ$3$回ずつ試みて,成功した回数が多い方が勝ちとする.$\mathrm{A}$の成功率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$の成功率は$\displaystyle \frac{2}{3}$であるとき,$\mathrm{A}$が勝つ確率は$[ ]$である.ただし,$\mathrm{A}$,$\mathrm{B}$の試行は独立な試行と考える.
(8)$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$の数字が書かれた$8$枚のカードがある.カードをもとに戻すことなく,$1$枚ずつ$8$枚すべてを取り出し,左から順に横に一列に並べる.このとき,数字$k$のカードの左側に並んだ$k$より小さい数字のカードの枚数が$k-1$である確率は$[ ]$である.ただし,$k$は$1$から$7$までの整数のいずれかとする.
津田塾大学 私立 津田塾大学 2011年 第3問
次の問いに答えよ.

(1)座標平面上の点$(x,\ y)$と点$(a,\ b)$とを結ぶ線分の傾きを求めよ.ただし,$x \neq a$とする.
(2)次の連立不等式の表す領域$D$を図示せよ.$x^2+y^2 \leqq 1,\ y \geqq x^2-1$
(3)$(2)$の領域$D$内の点$(x,\ y)$に対して$\displaystyle \frac{4y-7}{x-3}$が最大となる$(x,\ y)$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2011年 第4問
座標平面において,原点を通り傾きが$\tan 2\theta$の直線を$\ell$で表す.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{4}$を満たすとする.中心が第1象限に属し,直線$\ell$と$x$軸に接する半径1の円$C$を考える.さらに,円$C$と直線$\ell$および$x$軸に接し,中心が第1象限に属する2つの円のうち,面積が大きいものを$C^\prime$で表す.以下の問いに答えよ.

(1)円$C$の方程式を求めよ.
(2)円$C^\prime$の半径を,$\theta$の関数として表せ.
(3)円$C^\prime$の円周の長さが,円$C$の円周の長さの3倍になるように$\theta$の値を定めよ.
会津大学 公立 会津大学 2011年 第4問
$a$を正の定数とする.原点をOとし,曲線$y=x^3$上に点P$(a,\ a^3)$をとり,線分OPと曲線によって囲まれた部分をAとする.このとき,以下の問いに答えよ.

(1)Aを$x$軸のまわりに1回転してできる回転体の体積$V$を求めよ.
(2)Aを$y$軸のまわりに1回転してできる回転体の体積$W$を求めよ.
(3)直線OPの傾きを$m$とするとき,$\displaystyle \frac{mW}{V}$の値を求めよ.
一橋大学 国立 一橋大学 2010年 第1問
実数$p,\ q,\ r$に対して,3次多項式$f(x)$を$f(x)=x^3+px^2+qx+r$と定める.実数$a,\ c,\ $および0でない実数$b$に対して,$a+bi$と$c$はいずれも方程式$f(x)=0$の解であるとする.ただし,$i$は虚数単位を表す.

(1)$y=f(x)$のグラフにおいて,点$(a,\ f(a))$における接線の傾きを$s(a)$とし,点$(c,\ f(c))$における接線の傾きを$s(c)$とする.$a \neq c $のとき,$s(a)$と$s(c)$の大小を比較せよ.
(2)さらに,$a,\ c$は整数であり,$b$は0でない整数であるとする.次を証明せよ.

(3)$p,\ q,\ r$はすべて整数である.
(4)$p$が2の倍数であり,$q$が4の倍数であるならば,$a,\ b,\ c$はすべて2の倍数である.
一橋大学 国立 一橋大学 2010年 第2問
$a$を実数とする.傾きが$m$である2つの直線が,曲線$y=x^3-3ax^2$とそれぞれ点A,点Bで接している.

(1)線分ABの中点をCとすると,Cは曲線$y=x^3-3ax^2$上にあることを示せ.
(2)直線ABの方程式が$y=-x-1$であるとき,$a,\ m$の値を求めよ.
京都大学 国立 京都大学 2010年 第1問
次の各問に答えよ.

(1)座標平面上で,点$(1,\ 2)$を通り傾き$a$の直線と放物線$y=x^2$によって囲まれる部分の面積を$S(a)$とする.$a$が$0 \leqq a \leqq 6$の範囲を変化するとき,$S(a)$を最小にするような$a$の値を求めよ.
(2)$\triangle$ABCにおいて$\text{AB}=2,\ \text{AC}=1$とする.$\angle \text{BAC}$の二等分線と辺BCの交点をDとする.$\text{AD}=\text{BD}$となるとき,$\triangle$ABCの面積を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
の表す領域を$D$,原点を通る傾き$\displaystyle \tan \theta \ \left( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right)$の直線を$\ell$とする.$D$を$\ell$のまわりに1回転させてできる回転体の体積を$V$とするとき,次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2} < \theta < 0$のとき,$V$を$\theta$を用いて表せ.
(2)$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$のとき,$V$の最大値,最小値を求めよ.
静岡大学 国立 静岡大学 2010年 第4問
連立不等式
\[ x^2+y^2 \leqq 1,\quad x \geqq 0,\quad y \geqq 0 \]
の表す領域を$D$,原点を通る傾き$\displaystyle \tan \theta \ \left( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right)$の直線を$\ell$とする.$D$を$\ell$のまわりに1回転させてできる回転体の体積を$V$とするとき,次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2} < \theta < 0$のとき,$V$を$\theta$を用いて表せ.
(2)$\displaystyle -\frac{\pi}{2} < \theta < \frac{\pi}{2}$のとき,$V$の最大値,最小値を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。