タグ「傾き」の検索結果

21ページ目:全242問中201問~210問を表示)
北海学園大学 私立 北海学園大学 2011年 第3問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
点$\mathrm{A}(1,\ 0)$を通る傾き$k$の直線を$\ell$とする.$\ell$と放物線$C:y=-x^2-2x+4$の$2$つの交点を$\mathrm{P}(\alpha,\ -\alpha^2-2 \alpha+4)$,$\mathrm{Q}(\beta,\ -\beta^2-2 \beta+4)$とする.ただし,$\alpha<\beta$である.

(1)$\beta-\alpha$を$k$を用いて表せ.
(2)$\beta-\alpha$が最小となるときの$k$の値を求めよ.
(3)$(2)$のとき,$\ell$と$C$で囲まれた図形の面積を求めよ.
(4)$(2)$のとき,$C$上を$\mathrm{P}$から$\mathrm{Q}$まで動く点を$\mathrm{R}$とする.線分$\mathrm{AR}$の中点$\mathrm{M}$の軌跡を求めよ.
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
座標平面上において,原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1+\sqrt{3})$,点$\mathrm{B}(\sqrt{3},\ 2+\sqrt{3})$,点$\mathrm{C}(1+\sqrt{3},\ 0)$がある.このとき,以下の問いに答えよ.

(1)直線$\mathrm{AB}$を表す方程式と$\angle \mathrm{OAB}$の値を求めよ.
(2)$\angle \mathrm{OAB}$の二等分線の方程式を求めよ.
(3)中心が第$1$象限にあり,直線$\mathrm{AB}$,$x$軸,$y$軸に接する円$P$の方程式を求めよ.
(4)傾きが正で,かつ点$\mathrm{C}$を通り,$(3)$で求めた円$P$と接する直線$\ell$の方程式を求めよ.
明治大学 私立 明治大学 2011年 第3問
空欄$[オ]$,$[カ]$,$[キ]$に当てはまるものを解答群の中から選び,それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

座標平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=-x^2-8x-8$,$C_3:y=-x^2+ax+b$がある.$C_1$と$C_3$は$t>0$の範囲にただ$1$つの共有点$(t,\ t^2)$を持ち,直線$\ell$は点$\mathrm{P}$で$C_2$に接し,なおかつ点$\mathrm{Q}$で$C_3$に接しているとする.次の問に答えよ.

(1)$C_1$と$C_2$の共有点は$\displaystyle \left( -[ア],\ [イ] \right)$である.また,$C_1$と$C_3$もただ$1$つの共有点を持つことから$a=[ウ]t$,$b=-[エ]t^2$である.
(2)点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha$,$\beta$とする.$\ell$は点$\mathrm{P}$における$C_2$の接線および点$\mathrm{Q}$における$C_3$の接線に等しい.これら$2$つの接線の傾きおよび$y$軸との交点がともに等しいことから
\[ \beta-\alpha=[オ],\quad \beta^2-\alpha^2=[カ] \]
が成り立つ.したがって,$\beta+\alpha=[キ]$である.これより,直線$\ell$の方程式は
\[ y=\left( t-[ク] \right) x+\frac{t^2+[ケコ]t+[サ]}{[シ]} \]
である.
(3)$C_3$と$x$軸によって囲まれる部分の面積を$S_1$,$C_1$と直線$\ell$によって囲まれる部分の面積を$S_2$とすると,


$\displaystyle S_1=\frac{\sqrt{[ス]}}{[セ]} \cdot [ソ]t^3$

$\displaystyle S_2=\frac{\sqrt{[ス]}}{[セ]} \cdot \left( t+[タ] \right)^3$


である.$S_1-S_2$は$\displaystyle t=\frac{[チ]+[ツ] \sqrt{[テ]}}{[ト]}$のときに最小値をとる.

オ,カ,キの解答群
\[ \begin{array}{lllll}
\nagamarurei t+2 & \nagamaruichi t-2 & \nagamaruni 2t+4 & \nagamarusan t+\sqrt{2} & \nagamarushi t-\sqrt{2} \\
\nagamarugo t^2-2 & \nagamaruroku t^2-4 & \nagamarushichi t^2-8 & \nagamaruhachi 2t^2-4 & \nagamarukyu 2t^2-8
\end{array} \]
(図は省略)
明治大学 私立 明治大学 2011年 第2問
以下の$[あ]$から$[お]$にあてはまるものを答えよ.

座標平面上に$3$点$\mathrm{A}(-1,\ 1)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{C}(2,\ 4)$をとり,$\theta=\angle \mathrm{ABC}$とおく.ただし,$-1<b<2$とする.
(1)直線$\mathrm{AB}$の傾きと直線$\mathrm{BC}$の傾きを$b$を用いて表すと,それぞれ$[あ]$,$[い]$である.
(2)$\displaystyle \theta=\frac{\pi}{2}$となるのは,$b=[う]$のときである.
(3)$\displaystyle \theta \neq \frac{\pi}{2}$のとき,$\tan \theta$を$b$で表すと,$[え]$である.
(4)$b$が$-1<b<2$の範囲を動くとき,$\theta$の値が最小となるのは,$b=[お]$のときである.
立教大学 私立 立教大学 2011年 第3問
放物線$y=x^2$上の点$(a,\ a^2)$を$\mathrm{A}$とし,点$\mathrm{A}$における放物線の接線を$\ell$とする.ただし,$a>0$とする.また,$x$軸上の点$(a,\ 0)$の直線$\ell$について対称な点を$\mathrm{B}$とし,点$\mathrm{A}$,$\mathrm{B}$を通る直線を$m$とする.このとき,次の問$(1)$~$(4)$に答えよ.

(1)直線$\ell$と$x$軸の正の向きとのなす角を$\theta$とし,また,直線$m$と$x$軸の正の向きとのなす角を$\gamma$とする.$\gamma$を$\theta$と$\pi$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$,$\displaystyle -\frac{\pi}{2}<\gamma<\frac{\pi}{2}$とする.
(2)直線$m$の傾き$\tan \gamma$を$\tan \theta$で表せ.
(3)直線$m$の方程式を$a$を用いて表せ.
(4)直線$m$が,$a$の値によらず,必ず通過する点の座標を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
神奈川大学 私立 神奈川大学 2011年 第2問
$3$次関数$f(x)=x^3-20x+16$について,以下の問いに答えよ.

(1)導関数$f^\prime(x)$を求めよ.
(2)$y=f(x)$上の点$(a,\ f(a))$における接線の方程式を求めよ.
(3)$(2)$で求めた接線のうち,原点を通るものを求めよ.
(4)$y=f(x)$の接線で,$(3)$で求めた接線と傾きの等しいものが,もう$1$つある.その接線の方程式を求めよ.
愛知工業大学 私立 愛知工業大学 2011年 第3問
$xy$平面において,点$\mathrm{A}(-1,\ 0)$を通り,傾きが正である直線$\ell$が放物線$y=x^2$と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わり,$\mathrm{AP}:\mathrm{AQ}=1:4$であるとする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と放物線$y=x^2$で囲まれた部分の面積を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。