タグ「傾き」の検索結果

17ページ目:全242問中161問~170問を表示)
上智大学 私立 上智大学 2012年 第2問
直線$y=x-1$上の点$\mathrm{A}(a,\ a-1)$を通り,放物線$y=x^2$に接する直線を,$\ell,\ m$とする.ただし,$\ell$の方が$m$よりも傾きが大きいものとする.

(1)直線$\ell$の傾きを$a$で表すと
\[ [キ]\left( a+\sqrt{a^2+[ク]a+[ケ]} \right) \]
である.
(2)直線$\ell,\ m$と放物線$y=x^2$との接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする,線分$\mathrm{PQ}$と放物線$y=x^2$で囲まれた部分の面積$S$を$a$で表すと,
\[ S= \frac{[コ]}{[サ]}\left( a^2 +[シ]a+[ス] \right)^{\frac{3}{2}} \]
であり,$\displaystyle a=\frac{[セ]}{[ソ]}$のとき,$S$は最小値$\displaystyle \frac{\sqrt{[タ]}}{[チ]}$をとる.
(3)放物線$y=x^2$上の点で直線$y=x-1$との距離が最小であるのは$\displaystyle\left( \frac{[ツ]}{[テ]},\ \frac{[ト]}{[ナ]} \right)$で,その距離は$\displaystyle\frac{[ニ]}{[ヌ]}\sqrt{[ネ]}$である.
立教大学 私立 立教大学 2012年 第3問
$a$は$\displaystyle a>\frac{1}{2}$を満たす定数とする.座標平面上の半径$R$の円$C_1:x^2+(y-a)^2=R^2$は,$y>0$の表す領域にある.円$C_1$が放物線$y=x^2$と共有する点は$2$点のみである.このとき,次の問いに答えよ.

(1)共有点の$y$座標および$a$を,$R$を用いて表せ.
(2)円$C_1$と放物線$y=x^2$の共有点における放物線の$2$つの接線のうち傾きが正のものを$\ell$とする.$\ell$の式を$R$を用いて表せ.
(3)点$(0,\ -a)$を中心とする半径$r$の円$C_2$が直線$\ell$と接するとき,$r$を$R$を用いて表せ.
自治医科大学 私立 自治医科大学 2012年 第23問
曲線$y=x^3+6x^2+6x-2$において,傾きが$6$となる接線は$2$つ存在する.$2$つの接線を$y=6x+a$,$y=6x+b$と表記するとき,$\displaystyle \frac{a+b}{4}$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第1問
次の問いに答えよ.

(1)放物線$y=ax^2+bx+c$は$3$点$(-2,\ -3)$,$(0,\ -1)$,$(1,\ 6)$を通る.このとき,定数$a,\ b,\ c$の値を求め,さらにこの放物線の頂点の座標を求めよ.
(2)放物線$C:y=x^2$上の点$\mathrm{A}(t,\ t^2)$を通り,傾きが$m$であるような直線$\ell$の方程式を求めよ.また,$\ell$が$C$と異なる$2$点で交わる条件を求め,このとき,点$\mathrm{A}$とは異なる交点$\mathrm{B}$の座標を$t$と$m$を用いて表せ.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=2$,$\displaystyle \cos B=\frac{5}{6}$であるとき,辺$\mathrm{CA}$の長さ,および$\cos A$,$\cos C$の値をそれぞれ求めよ.
東北学院大学 私立 東北学院大学 2012年 第3問
次の問いに答えよ.

(1)$\alpha,\ \beta$を実数の定数とするとき,
\[ \int_\alpha^\beta (x-\alpha)(x-\beta) \, dx \]
を計算せよ.
(2)点$(1,\ 2)$を通る直線と放物線$y=x^2$とで囲まれる部分の面積が最小となるときの直線の傾きを求めよ.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)関数$f(\theta)=\sin^2 \theta-\sqrt{3} \cos \theta+2 (0 \leqq \theta \leqq \pi)$は,$\theta=[ア]$で最大値$[イ]$をとる.
(2)実数$x,\ y$が$2x+3y+1=0$を満たすとき,$4^x+8^y$は$x=[ウ]$で最小値$[エ]$をとる.
(3)実数$a$に対して,$3$次方程式$9x^3-3x^2+ax-1=0$の$1$つの解が$\displaystyle \frac{1}{3}$のとき,$a=[オ]$である.また,この方程式の$\displaystyle \frac{1}{3}$以外の解を$\alpha,\ \beta$とするとき,$\displaystyle \alpha^{18}+\beta^{18}=\frac{[カ]}{3^9}$である.
(4)平面上に,原点$\mathrm{O}$を中心とする半径$1$の円$C$と,点$(3,\ 0)$を通る傾き$m$の直線$\ell$がある.$\ell$と$C$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$m$の範囲は$[キ]$である.また,線分$\mathrm{AB}$の長さが$\displaystyle \frac{\sqrt{10}}{5}$のとき,$m=[ク]$である.
(5)$a$を$0$でない実数とする.関数$f(x)=a(x^3-3x^2+a)$の極小値が$1$であり,極大値が$7$より大きいとき,$a=[ケ]$で,その極大値は$[コ]$である.
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)$3$つの行列$A=\left( \begin{array}{cc}
5 & 3 \\
2 & 1
\end{array} \right)$,$B=\left( \begin{array}{rr}
1 & -3 \\
-2 & 5
\end{array} \right)$,$C=\left( \begin{array}{rr}
2 & -3 \\
-4 & 5
\end{array} \right)$がある.$A$の逆行列$A^{-1}$を求めると,$A^{-1}=[ア]$である.$B^2A^3CA$を求めると,$B^2A^3CA=[イ]$である.
(2)$k>1$とする.$2$次方程式$kx^2+(1-2k)x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-2(k+1)x+4k=0$の解の$1$つは$\beta$であり,もう$1$つの解を$\gamma$とする.このとき,$\beta$を求めると$\beta=[ウ]$である.さらに,$\beta-\alpha=\gamma-\beta$が成り立つとき,$k$の値を求めると$k=[エ]$である.
(3)$y=e^x+e^{-x}$とする.$y=3$のとき,$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}$の値は$\displaystyle e^{\frac{x}{2}}+e^{-\frac{x}{2}}=[オ]$である.また,$y=4$のとき,$x=[カ]$である.
(4)原点$\mathrm{O}$からの距離と点$\mathrm{A}(1,\ 1)$からの距離の比が$\sqrt{2}:1$である点$\mathrm{P}(x,\ y)$の軌跡は方程式$[キ]$で与えられる.この図形上の点$\mathrm{Q}(s,\ t)$における接線の傾きが$2$であるとき,$\mathrm{Q}$の座標は$(s,\ t)=[ク]$である.
(5)区別できない$9$個の球を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$の$4$つの箱のいずれかに入れる.$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$に入れた球の個数をそれぞれ$a,\ b,\ c,\ d$とし,$X=1000a+100b+10c+d$とする.$X$のとりうる値を小さい順に並べたときに$31$番目にくる値を求めると$[ケ]$であり,$X$が$4$桁の数となる球の入れ方は$[コ]$通りある.
東京理科大学 私立 東京理科大学 2012年 第1問
$a,\ b$を実数として,$x$の$4$次関数$f(x)=x^4-ax^2+bx$を考える.次の問いに答えよ.

(1)$s,\ t$を異なる実数とする.曲線$y=f(x)$の,$x=s$における接線の傾きと,$x=t$における接線の傾きが等しいとき,$a$を$s$と$t$を用いて表せ.
(2)曲線$y=f(x)$が異なる$2$点で共通の接線$\ell$をもつとし,その接点の$x$座標の一つを$s$とする.

(i) $a$を$s$を用いて表せ.
(ii) $\ell$の方程式を,$a$と$b$を用いて表せ.

(3)関数$f(x)$が極大値をもつための必要十分条件を$a$と$b$に関する不等式で与えよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
以下の文章の空欄に適切な数,式または行列を入れて文章を完成させなさい.ただし$(2)$において,適切な行列が複数個ある場合は,それらをすべて記入しなさい.

(1)$a_1=1$,$a_2=4$,$a_{n+2}=-a_{n+1}+2a_n (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[あ]$である.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の表す$1$次変換により点$\mathrm{B}(1,\ 1)$と点$\mathrm{C}(1,\ 0)$はそれぞれ点$\mathrm{B}^\prime$と点$\mathrm{C}^\prime$に移されるとする.また$\mathrm{O}(0,\ 0)$を原点とする.$\overrightarrow{\mathrm{OB}^\prime}=2 \overrightarrow{\mathrm{OB}}$,かつ$\triangle \mathrm{OB}^\prime \mathrm{C}^\prime$が正三角形となるような行列$A$をすべて求めると$A=[い]$である.
(3)媒介変数$t$を用いて
\[ \left\{ \begin{array}{l}
x=\displaystyle \frac{e^t+3e^{-t}}{2} \\ \\
y=e^t-2e^{-t}
\end{array} \right. \]
と表される曲線$C$の方程式は
\[ [う]x^2+[え]xy+[お]y^2=25 \]
である.
また曲線$C$の接線の傾きは,$t=[か]$に対応する点において$-2$となる.
(4)$\alpha>1$を実数とする.$0 \leqq x \leqq 1$を定義域とする関数$f(x)=x-x^\alpha$が最大値をとる点を$x(\alpha)$とすると$x(\alpha)=[き]$である.また$\displaystyle \lim_{\alpha \to 1+0} x(\alpha)=[く]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし$(2)$において,適切な$t$の値が複数個ある場合は,それらをすべて記入しなさい.

放物線$y=x^2$を$C$とする.$C$上に点$\mathrm{P}(-1,\ 1)$をとり,$\mathrm{P}$における$C$の法線と$C$との交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.また$t$を実数として,点$\mathrm{P}$をとおって傾きが$t$の直線を$\ell_1$とし,点$\mathrm{Q}$をとおって$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)点$\mathrm{Q}$の座標は$([あ],\ [い])$である.
(2)点$\mathrm{R}$が点$\mathrm{P}$,$\mathrm{Q}$と異なるように$t$を変化させるときの$\triangle \mathrm{PQR}$の面積の最大値は$[う]$である.また$\triangle \mathrm{PQR}$の面積を最大にする$t$の値をすべて求めると$t=[え]$である.
(3)点$\mathrm{P}$,$\mathrm{Q}$とは異なる$C$上の点$\mathrm{T}(u,\ u^2)$を考える.$\overrightarrow{\mathrm{TP}} \cdot \overrightarrow{\mathrm{TQ}}<0$となるような$u$の範囲は
\[ [お]<u<[か] \]
である.
(4)点$\mathrm{R}$が,不等式$y<x^2$の表す領域に入るような$t$の範囲は
\[ [き]<t<[く] \]
である.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。