タグ「偶数」の検索結果

3ページ目:全202問中21問~30問を表示)
福岡大学 私立 福岡大学 2016年 第5問
平均値と中央値は共に代表値であり,求め方は全く異なるが比較的近い値であることが多い.いま,偶数個の身長のデータがあり,その最小値は$m=140 \, \mathrm{cm}$,最大値は$M=180 \, \mathrm{cm}$である.このデータの中央値が$A=150 \, \mathrm{cm}$のとき,半数のデータは$m$以上$A$以下の値であり,残る半数のデータは$A$以上$M$以下である.このことから平均値$\overline{x}$のとる値の範囲は$[ ]$である.また,平均値と中央値の関係を用いると,最小値が$m=140 \, \mathrm{cm}$,最大値が$M=180 \, \mathrm{cm}$である偶数個のデータの平均値が$\overline{x}=170 \, \mathrm{cm}$であるとき,中央値$A$の取る値の範囲は$[ ]$である.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$4$次方程式$x^4-x^3+ax^2+bx+2=0$が$1$と$-2$を解にもつとき,係数$a,\ b$の値を求めると$(a,\ b)=[ ]$である.また,この方程式の他の解を求めると,$[ ]$である.
(2)袋の中に$1$から$13$までの数が$1$つずつ書かれた$13$個の玉が入っている.この袋の中から,$2$個の玉を同時にとり出す.このとき,とり出した玉に書かれた$2$つの数の和が偶数になる確率は$[ ]$である.また,とり出した玉に書かれた数がどちらも$10$以下であったとき,数の和が偶数である条件付き確率は$[ ]$である.
(3)$3$点$\mathrm{A}(1,\ -1,\ 1)$,$\mathrm{B}(2,\ 1,\ -1)$,$\mathrm{C}(4,\ -5,\ 1)$がある.$2$つのベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めると$\cos \theta=[ ]$である.また,$\triangle \mathrm{ABC}$の面積は$[ ]$である.
龍谷大学 私立 龍谷大学 2016年 第3問
$\mathrm{A}$と$\mathrm{B}$の$2$人が次のゲームを行う.$1$から$6$までの数が$1$つずつ記入された$6$枚のカードがあり,そのうち$\mathrm{A}$は奇数の書かれた$3$枚のカードを,$\mathrm{B}$は偶数の書かれた$3$枚のカードを持っている.

$2$人が,それぞれ持っているカードから無作為に$1$枚を選び,同時に出す.このとき大きい数を出した方を勝ちとする.
この勝負を,$1$度出したカードは戻さずに続けて$2$回行う.

(1)$1$回目の勝負で,$\mathrm{A}$が勝つ確率を求めなさい.
(2)$\mathrm{A}$が$2$連勝する確率を求めなさい.
(3)$\mathrm{A}$が$2$連敗する確率を求めなさい.
沖縄国際大学 私立 沖縄国際大学 2016年 第2問
以下の各問いに答えなさい.

(1)「実数」は,「実数」と「実数」に$3$つの演算(加法・減法・乗法)を行った場合,再び「実数」になる.同じように,同じ数の分類同士で$3$つの演算を行った結果が,再びその分類になるものを以下のなかからすべて選びなさい.

有理数,自然数,整数

(2)以下の$(ⅰ),\ (ⅱ)$についてその式を因数分解した式を答えなさい.

(i) $18x^2+9x-5$
(ii) $x^3+125$

(3)以下の$(ⅰ),\ (ⅱ)$の不等式の解を答えなさい.

(i) $|x+2|<5$
(ii) $|x+3|<2x+1$

(4)次の命題の対偶となる命題を答えなさい.

「$n+1$が偶数ならば,$n$は奇数」
愛知県立大学 公立 愛知県立大学 2016年 第1問
$4$個のさいころを同時に投げて出た目をそれぞれ$A,\ B,\ C,\ D$で表すとき,以下の問いに答えよ.

(1)$A+B+C+D$が偶数である確率を求めよ.
(2)$AB+CD$が偶数である確率を求めよ.
(3)$ABC+BCD$が$5$の倍数である確率を求めよ.
(4)$ABCD$が$10$の倍数である確率を求めよ.
釧路公立大学 公立 釧路公立大学 2016年 第4問
次の問いに答えよ.

(1)大中小$3$つのさいころを投げるとき,出る$3$つの目の積が偶数となる場合は何通りあるか.
(2)$1$から$25$までの整数が$1$つずつ書かれた$25$枚のカードがある.以下の問いに答えよ.

(i) $2$枚のカードをもとに戻さず順に取り出すとき,$2$枚目が$5$の倍数になる確率を求めよ.
(ii) $2$枚のカードを同時に取り出すとき,取り出した$2$枚のカードの整数の和が$5$の倍数になる確率を求めよ.
東京大学 国立 東京大学 2015年 第5問
$m$を$2015$以下の正の整数とする.$\comb{2015}{m}$が偶数となる最小の$m$を求めよ.
九州大学 国立 九州大学 2015年 第5問
以下の問いに答えよ.

(1)$n$が正の偶数のとき,$2^n-1$は$3$の倍数であることを示せ.
(2)$n$を自然数とする.$2^n+1$と$2^n-1$は互いに素であることを示せ.
(3)$p,\ q$を異なる素数とする.$2^{p-1}-1=pq^2$を満たす$p,\ q$の組をすべて求めよ.
九州大学 国立 九州大学 2015年 第4問
以下の問いに答えよ.

(1)$n$が正の偶数のとき,$2^n-1$は$3$の倍数であることを示せ.
(2)$p$を素数とし,$k$を$0$以上の整数とする.$2^{p-1}-1=p^k$を満たす$p,\ k$の組をすべて求めよ.
東京工業大学 国立 東京工業大学 2015年 第5問
$n$を相異なる素数$p_1,\ p_2,\ \cdots,\ p_k (k \geqq 1)$の積とする.$a,\ b$を$n$の約数とするとき,$a,\ b$の最大公約数を$G$,最小公倍数を$L$とし,
\[ f(a,\ b)=\frac{L}{G} \]
とする.

(1)$f(a,\ b)$が$n$の約数であることを示せ.
(2)$f(a,\ b)=b$ならば,$a=1$であることを示せ.
(3)$m$を自然数とするとき,$m$の約数であるような素数の個数を$S(m)$とする.$S(f(a,\ b))+S(a)+S(b)$が偶数であることを示せ.
スポンサーリンク

「偶数」とは・・・

 まだこのタグの説明は執筆されていません。