タグ「側面」の検索結果

2ページ目:全22問中11問~20問を表示)
一橋大学 国立 一橋大学 2012年 第5問
最初に1の目が上面にあるようにサイコロが置かれている.その後,4つの側面から1つの面を無作為に選び,その面が上面になるように置き直す操作を$n$回繰り返す.なお,サイコロの向かい合う面の目の数の和は7である.

(1)最後に1の目が上面にある確率を求めよ.
(2)最後に上面にある目の数の期待値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
$\mathrm{ABCDE}$を$1$辺の長さが$1$の正方形$\mathrm{ABCD}$を底面とし,$4$個の正三角形を側面とする正四角錐とする.
(図は省略)

(1)$\triangle \mathrm{CDE}$の重心を$\mathrm{G}$とする.ベクトル$\overrightarrow{\mathrm{AG}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AG}} = [セ]$となる.
(2)$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}$が平面$\alpha$上の任意のベクトルと垂直なとき,$\overrightarrow{p}$は平面$\alpha$と垂直であるという.$\overrightarrow{p} = a\, \overrightarrow{\mathrm{AB}} + b\, \overrightarrow{\mathrm{AD}} + c\, \overrightarrow{\mathrm{AE}}\ (a,\ b,\ c\text{は実数})$が$\triangle \mathrm{CDE}$を含む平面と垂直なとき,$a:b:c=[ソ]$である.よって,$|\overrightarrow{p}|=1$かつ$\overrightarrow{p} \cdot \overrightarrow{\mathrm{AD}} > 0$となるように$a,\ b,\ c$を定めると,$\overrightarrow{p} = [タ]$となる.
(3)正四角錐$\mathrm{ABCDE}$の$\triangle \mathrm{CDE}$に,各辺の長さが$1$の正四面体$\mathrm{CDEF}$を貼り付ける.ベクトル$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AD}},\ \overrightarrow{\mathrm{AE}}$で表すと,$\overrightarrow{\mathrm{AF}}=[チ]$となる.また,$\mathrm{H}$を辺$\mathrm{EC}$の中点とすると,$\overrightarrow{\mathrm{HA}} \cdot \overrightarrow{\mathrm{HF}}= [ツ]$であり,$\triangle \mathrm{AHF}$の面積は[テ]である.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
岐阜薬科大学 公立 岐阜薬科大学 2012年 第3問
$3$辺の長さが$10,\ 15,\ 15$の二等辺三角形$6$個を側面とし,$1$辺の長さが$10$の正六角形を底面とする正六角錐について,次の問いに答えよ.

(1)表面積と体積を求めよ.
(2)底面と全ての側面に接する球$\mathrm{P}$の半径を求めよ.
(3)球$\mathrm{P}$と全ての側面に接する球$\mathrm{Q}$の半径を求めよ.
神戸薬科大学 私立 神戸薬科大学 2011年 第3問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)平面上にサイコロがある.サイコロの$4$つの側面のいずれかの面を$\displaystyle \frac{1}{4}$の確率で底面にする操作を考える.$1$の目が出ているサイコロに対してこの操作を$n$回繰り返す.このとき,以下の問に答えよ.ただし,$1$の目の裏面は$6$の目である.

(i) この操作を$n$回行ったとき,$1$か$6$の目が出ている確率を$P_n$とする.
$P_1=[ ]$,$P_2=[ ]$,$P_3=[ ]$である.
(ii) $P_n$を$n$の式で表すと,$P_n=[ ]$である.

(2)\begin{mawarikomi}{35mm}{
(図は省略)
}
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{AB}=1$,$\angle \mathrm{OAB}={90}^\circ$となる直角二等辺三角形である.$\angle \mathrm{BOA}$の二等分線上の点$\mathrm{C}$を$\mathrm{BC} \perp \mathrm{OC}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の問に答えよ.

(i) $\overrightarrow{\mathrm{OC}}=[ ] \overrightarrow{a}+[ ] \overrightarrow{b}$である.
(ii) $\mathrm{AC}$の長さの$2$乗を求めると,$\mathrm{AC}^2=[ ]$である.

\end{mawarikomi}
高知工科大学 公立 高知工科大学 2011年 第2問
底面が正方形で,4個の側面がすべて合同な二等辺三角形である四角錘を考える.底面の正方形の一辺の長さを$x$,側面の二等辺三角形の等しい辺の長さを$a$とする.この四角錘の体積を$V$として,次の各問に答えよ.

(1)$V$を$a$と$x$で表せ.
(2)$x$のとりうる値の範囲を$a$を用いて表せ.
(3)$V$の最大値を$a$を用いて表せ.また,そのときの$x$の値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2011年 第1問
$xy$平面上にある長方形$\mathrm{OPRS}$を底面とし,三角形$\mathrm{OST}$,三角形$\mathrm{PRQ}$,四角形$\mathrm{OPQT}$,四角形$\mathrm{RSTQ}$を側面とする五面体$\mathrm{OPQRST}$がある.五面体$\mathrm{OPQRST}$が$\mathrm{OP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{ST}=\mathrm{TO}=1$,$\angle \mathrm{TOP}=\angle \mathrm{OPQ}=\angle \mathrm{PQR}=\angle \mathrm{QRS}=\angle \mathrm{RST}=\angle \mathrm{STO}=\theta (90^\circ<\theta<120^\circ)$をみたしているとき,次の問いに答えよ.ただし,$2$点$\mathrm{O}$,$\mathrm{P}$の座標をそれぞれ$(0,\ 0,\ 0)$,$(1,\ 0,\ 0)$とし,$\displaystyle \sin \frac{\theta}{2}=a$とする.

(1)辺$\mathrm{OS}$の長さを$a$を用いて表せ.
(2)点$\mathrm{Q}$の座標を$a$を用いて表せ.ただし,点$\mathrm{Q}$の$y$座標は正とする.
(3)五面体$\mathrm{OPQRST}$の体積$V$を$a$を用いて表せ.
横浜市立大学 公立 横浜市立大学 2011年 第3問
平面上の点$\mathrm{A}$を中心とする半径$a$の円から,中心角が${60}^\circ$で$\mathrm{AP}=\mathrm{AQ}=a$となる扇形$\mathrm{APQ}$を切り取る.つぎに線分$\mathrm{AP}$と$\mathrm{AQ}$を貼り合わせて,$\mathrm{A}$を頂点とする直円錐$K$を作り,これを点$\mathrm{O}$を原点とする座標空間におく.

$\mathrm{A}$,$\mathrm{P}$はそれぞれ$z$軸,$x$軸上の正の位置にとり,扇形$\mathrm{APQ}$の弧$\mathrm{PQ}$は$xy$平面上の$\mathrm{O}$を中心とする円$S$になるようにする.
また弦$\mathrm{PQ}$から定まる$K$の側面上の曲線を$C$とする.
(図は省略)
以下の問いに答えよ.

(1)$S$の半径を$b$とする.$S$上の点$\mathrm{R}(b \cos \theta,\ b \sin \theta,\ 0) (0 \leqq \theta \leqq 2\pi)$に対し,$K$上の母線$\mathrm{AR}$と$C$の交点を$\mathrm{M}$とする.$b$と線分$\mathrm{AM}$の長さを$a$と$\theta$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OM}}$を$xy$平面に正射影したベクトルの長さを$r$とする.$r$を$a$と$\theta$を用いて表し,定積分
\[ \int_0^{2\pi} \frac{1}{2} \{r(\theta)\}^2 \, d\theta \]
を求めよ.ただし,ベクトル$\overrightarrow{\mathrm{OE}}=(a_1,\ a_2,\ a_3)$を$xy$平面に{\bf 正射影したベクトル}とは$\overrightarrow{\mathrm{OE}^\prime}=(a_1,\ a_2,\ 0)$のことである.
釧路公立大学 公立 釧路公立大学 2011年 第3問
半径が$a$の球に内接する直円錐のうち,体積が最も大きいものを直円錐$C$とし,その高さを$h$,体積を$V$とする.ただし,$a$は定数であり,円周率は$\pi$とする.このとき,以下の各問に答えよ.

(1)直円錐$C$の体積$V$を$h$の関数で表せ.
(2)$a=6$のとき,$h$と$V$を求めよ.
(3)$(2)$において,直円錐$C$の表面を底面の円と側面の扇形に分解したとき,扇形の中心角$\theta$を求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第2問
$x$が$\displaystyle 1 \leqq x \leqq \frac{7}{2}$の範囲を動くとき,以下の問いに答えよ.
\img{409_2570_2010_1}{10}


(1)図のような,底面の半径が$\sqrt{x}$,高さが$4-x$の直円錐の側面積$S$ \\
を求めよ.
(2)$\displaystyle \left( \frac{S}{\pi} \right)^2$を$f(x)$とするとき,$f(x)$の増減を調べ,$f(x)$の最大値, \\
最小値,およびそのときの$x$の値を求めよ.
スポンサーリンク

「側面」とは・・・

 まだこのタグの説明は執筆されていません。