タグ「停止」の検索結果

1ページ目:全8問中1問~10問を表示)
大阪大学 国立 大阪大学 2015年 第4問
座標空間の$x$軸上に動点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$は時刻$0$において,原点を出発する.$\mathrm{P}$は$x$軸の正の方向に,$\mathrm{Q}$は$x$軸の負の方向に,ともに速さ$1$で動く.その後,ともに時刻$1$で停止する.点$\mathrm{P}$,$\mathrm{Q}$を中心とする半径$1$の球をそれぞれ$A,\ B$とし,空間で$x \geqq -1$の部分を$C$とする.このとき,以下の問いに答えよ.

(1)時刻$t (0 \leqq t \leqq 1)$における立体$(A \cup B) \cap C$の体積$V(t)$を求めよ.
(2)$V(t)$の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$2$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3) 図$2$において,$\mathrm{B}_1,\ \mathrm{B}_2$をともに通過して$\mathrm{B}$に到達する確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
図$1$~$3$のような網目状の道があり,頂点$\mathrm{O}$を出発点とし,各頂点においてそれぞれ$\displaystyle \frac{1}{2}$の確率で上,または右斜め下に進む.ただし,右斜め下に道がない場合は必ず上に,上に道がない場合は必ず右斜め下に進み,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のいずれかに到達したら停止する.次の問いに答えよ.
(図は省略)

(1)図$1$において,各頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に到達する確率$P_{\mathrm{A}},\ P_{\mathrm{B}},\ P_{\mathrm{C}}$を求めよ.
(2)図$3$において,$\mathrm{C}_1,\ \mathrm{C}_2$をともに通過して$\mathrm{C}$に到達する確率を求めよ.
(3)図$3$において,$\mathrm{B}$に到達する確率を求めよ.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
千葉大学 国立 千葉大学 2012年 第9問
以下の問いに答えよ.

(1)関数$f(x)$は第2次導関数$f^{\prime\prime}(x)$が連続で,ある$a<b$に対して,$f^{\prime}(a)=f^{\prime}(b)=0$を満たしているものとする.このとき
\[ f(b)-f(a)=\int_a^b \left( \frac{a+b}{2}-x \right) f^{\prime\prime}(x) \, dx \]
が成り立つことを示せ.
(2)直線道路上における車の走行を考える.ある信号で停止していた車が,時刻0で発進後,距離$L$だけ離れた次の信号に時刻$T$で到達し再び停止した.この間にこの車の加速度の絶対値が$\displaystyle \frac{4L}{T^2}$以上である瞬間があることを示せ.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
成城大学 私立 成城大学 2012年 第2問
ある自動車が速度$x \; \mathrm{km/h}$で走行しているとき,ブレーキをかけてから停止するまでの距離を$y \; \mathrm{m}$とすると,$x$と$y$の間には$y=ax^2$という関係がある.ただし,$a$は定数とし,$x=50$のとき,$y=25$であるとする.

(1)$a$の値はいくつになるか.
(2)危険を感じてから実際にブレーキをかけるまでの時間が$0.9$秒である運転者が,この車を停止させるまでの距離を$51 \; \mathrm{m}$以下にするためには,速度何$\mathrm{km/h}$以下で走行すればよいか.
スポンサーリンク

「停止」とは・・・

 まだこのタグの説明は執筆されていません。