タグ「偏り」の検索結果

1ページ目:全4問中1問~10問を表示)
信州大学 国立 信州大学 2015年 第4問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第3問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
信州大学 国立 信州大学 2015年 第2問
次の問いに答えよ.

(1)$n$個の実数$a_1,\ a_2,\ \cdots,\ a_n$に対して
\[ \left( \sum_{k=1}^n a_k \right)^2 \leqq n \sum_{k=1}^n {a_k}^2 \]
が成立することを示せ.また,等号が成立するための$a_1,\ a_2,\ \cdots,\ a_n$についての必要十分条件を求めよ.
(2)偏りをもつサイコロを$2$回投げるとき,同じ目が続けて出る確率は$\displaystyle \frac{1}{6}$よりも大きいことを示せ.ただし,サイコロが偏りをもつとは,$1$から$6$の目が同様に確からしく出ないことをいう.
産業医科大学 私立 産業医科大学 2013年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)$100$円,$50$円,$10$円の硬貨がそれぞれたくさんあるとする.ある品物を買うのに$2300$円かかるとき,このお金による支払い方の総数は$[ ]$である.
(2)整式$P(x)$を$x^2-4x+3$で割ったときの余りは$x+1$であり,$x^2-3x+2$で割ったときの余りは$3x-1$である.$P(x)$を$x^3-6x^2+11x-6$で割ったときの余りは$[ ]$である.
(3)数列の極限$\displaystyle \lim_{n \to \infty} \frac{\sum_{k=1}^{2n} (k+n)^2}{\sum_{k=1}^{2n} k^2}$の値は$[ ]$である.
(4)$\sqrt{x}+\sqrt{y}=1$で表される座標平面上の曲線を$C$とする.曲線$C$上の$x$座標が$s (0<s<1)$である点における接線を$\ell$とする.接線$\ell$と曲線$C$および$x$軸,$y$軸とで囲まれた部分を,$x$軸のまわりに$1$回転してできる回転体の体積の最小値は$[ ]$である.また,そのときの$s$の値は$[ ]$である.
(5)原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$を結ぶ線分上に点$\mathrm{P}$がある.$\theta=\angle \mathrm{AOP}$とし,線分$\mathrm{OP}$の長さを$r$とするとき,$r$は$\theta$の関数として$r=f(\theta)$と表せる.このとき定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta) \, d\theta$の値は$[ ]$であり,$\displaystyle \int_0^{\frac{\pi}{2}} f(\theta)^2 \cos \theta \, d\theta$の値は$[ ]$である.
(6)$\mathrm{A}$が$1$枚のカードを,$\mathrm{B}$が$4$枚のカードを持っている.表が出る確率と裏が出る確率がそれぞれ$\displaystyle \frac{1}{2}$の偏りのないコインを投げて,表が出れば$\mathrm{A}$は$\mathrm{B}$からカードを$1$枚もらう.裏が出れば$\mathrm{A}$は$\mathrm{B}$にカードを$1$枚わたす.ただし,手もとにカードがなければわたさなくてよい.この試行を$4$回くり返した後,$\mathrm{A}$の手もとに残るカードの枚数の期待値は$[ ]$である.
スポンサーリンク

「偏り」とは・・・

 まだこのタグの説明は執筆されていません。