タグ「倍数」の検索結果

20ページ目:全225問中191問~200問を表示)
明治大学 私立 明治大学 2011年 第1問
以下の$[ア]$から$[ツ]$にあてはまる数字または式を記入せよ.

(1)数列
\[ \frac{1}{1+2},\ \frac{1}{1+2+3},\ \frac{1}{1+2+3+4},\ \cdots \]
の第$n$項を$a_n$で表すと
\[ a_{40} = \frac{1}{[ア][イ][ウ]} \]
であり,
\[ \sum_{n=40}^{80} a_n = \frac{[エ]}{[オ][カ]} \]
である.
(2)$\mathrm{OA}=2$,$\mathrm{OB}=1$である三角形$\mathrm{OAB}$において,$\angle \mathrm{AOB}$の$2$等分線と辺$\mathrm{AB}$の交点を$\mathrm{C}$とする.また線分$\mathrm{AB}$を$5:2$に外分する点を$\mathrm{D}$,線分$\mathrm{OB}$を$2:1$に外分する点を$\mathrm{E}$とする.さらに直線$\mathrm{OC}$と直線$\mathrm{DE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,


$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{[キ]}{[ク]} \overrightarrow{a}+\frac{[ケ]}{[コ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{DE}}=\frac{[サ]}{[シ]} \overrightarrow{a}+\frac{[ス]}{[セ]} \overrightarrow{b},$

$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[ソ]}{[タ]} \overrightarrow{a}+\frac{[チ]}{[ツ]} \overrightarrow{b}$


となる.

(3)$\displaystyle \lim_{x \to 0}\frac{\sqrt{1+6x^2}-1}{\sin^2 x}=[テ]$
(4)$\comb{n}{5}$が$5$の倍数となるような整数$n$は,$100 \leqq n \leqq 125$の範囲に$[ト]$個ある.
金沢工業大学 私立 金沢工業大学 2011年 第1問
次の問いに答えよ.

(1)$x=\sqrt{3}+\sqrt{2}$のとき,$\displaystyle x+\frac{1}{x}=[ア] \sqrt{[イ]}$,$\displaystyle x^3+\frac{1}{x^3}=[ウエ] \sqrt{[オ]}$である.
(2)$(2a+1)(2a-1)(a^2-a+4)$の展開式における$a^2$の項の係数は$[カキ]$である.
(3)整式$A=x^2-2xy+3y^2$,$B=2x^2+3y^2$,$C=x^2-2xy$について
\[ 2(A-B)-\{C-(3A-B)\}=[クケ]x^2-[コ]xy+[サ]y^2 \]
である.
(4)方程式$x^2+3kx+k^2+5k=0$が重解をもつような定数$k$の値は$[シ]$,$[ス]$である.ただし,$[シ]<[ス]$とする.また,$k=[ス]$のとき,この方程式の重解は$x=[セソ]$である.
(5)$2$次関数$y=2x^2-2mx-m^2+9$のグラフが$x$軸の正の部分と異なる$2$点で交わるような定数$m$の値の範囲は$\sqrt{[タ]}<m<[チ]$である.
(6)$\displaystyle \tan \theta=-\frac{\sqrt{5}}{2}$のとき,$\displaystyle \sin \theta=\frac{\sqrt{5}}{[ツ]}$,$\displaystyle \cos \theta=\frac{[テト]}{[ナ]}$である.ただし,$0^\circ \leqq \theta \leqq 180^\circ$とする.
(7)数字$0,\ 1,\ 2,\ 3,\ 4$を使い$4$桁の整数を作る.このとき,$4$桁の整数は全部で$[アイ]$個あり,このうち$2$の倍数は$[ウエ]$個ある.ただし,同じ数字を重複して使わないこととする.
(8)大小$2$個のさいころを同時に投げ,大きいさいころの出た目を$X$,小さいさいころの出た目を$Y$とする.このとき,$X+Y=8$となる確率は$\displaystyle \frac{[オ]}{[カキ]}$であり,$2X-Y=4$となる確率は$\displaystyle \frac{[ク]}{[ケコ]}$である.
自治医科大学 私立 自治医科大学 2011年 第20問
$1$個のさいころを$3$回投げたとき,$1$回目,$2$回目,$3$回目に出た目の数をそれぞれ$a,\ b,\ c$とする.積$abc$が$3$の倍数となる確率を$m$,積$abc$が$5$の倍数となる確率を$n$としたとき,$\displaystyle \frac{91m}{38n}$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
$1$から$9$までの整数の中から異なる$3$つの整数$a,\ b,\ c$を選ぶとき,次の問いに答えよ.ただし,$a<b<c$とする.

(1)$a,\ b,\ c$の積が奇数になる選び方は何通りあるか.
(2)$a,\ b,\ c$の積が$3$の倍数になる選び方は何通りあるか.
(3)$a,\ b,\ c$の積が$9$の倍数になる選び方は何通りあるか.
東北学院大学 私立 東北学院大学 2011年 第5問
次の問いに答えよ.

(1)$2160$の正の約数は全部で何個あるか.またそれらの総和を求めよ.
(2)$864$の正の約数のうち,$12$の倍数または$18$の倍数であるものは全部で何個あるか.またそれらの総和を求めよ.
龍谷大学 私立 龍谷大学 2011年 第2問
さいころを$3$回続けて投げて出る目の数を順に$a,\ b,\ c$とする.$m=abc$として次の問いに答えなさい.

(1)$m$が$5$の倍数となる確率を求めなさい.
(2)$m$が$3$の倍数となる確率を求めなさい.
(3)$m$が素数となる確率を求めなさい.
(4)$m$が$36$となる確率を求めなさい.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$x^2-x-1=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[ア]$,$\alpha^3+\beta^3=[イ]$である.
(2)$\triangle \mathrm{ABC}$は$\angle \mathrm{ACB}=90^\circ$の直角三角形である.点$\mathrm{C}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{CD}$とする.$\mathrm{BD}:\mathrm{DA}=2:3$のとき,$\sin \angle \mathrm{CAB}=[ウ]$,$\sin \angle \mathrm{ABC}=[エ]$である.
(3)$1$から$100$までの自然数の番号をつけた$100$枚のカードから$1$枚を取り出すとき,そのカードの番号が$4$の倍数または$5$の倍数である確率は$[オ]$,$3$の倍数または$7$の倍数である確率は$[カ]$である.
(4)$2^n$が$4$桁の数となるような自然数$n$は$[キ]$個であり,$12$桁の数となるような自然数$n$は$[ク]$個である.ただし,$\log_{10}2=0.3010$とする.
名城大学 私立 名城大学 2011年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$x^2-x-1=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[ア]$,$\alpha^3+\beta^3=[イ]$である.
(2)$\triangle \mathrm{ABC}$は$\angle \mathrm{ACB}=90^\circ$の直角三角形である.点$\mathrm{C}$から辺$\mathrm{AB}$に下ろした垂線を$\mathrm{CD}$とする.$\mathrm{BD}:\mathrm{DA}=2:3$のとき,$\sin \angle \mathrm{CAB}=[ウ]$,$\sin \angle \mathrm{ABC}=[エ]$である.
(3)$1$から$100$までの自然数の番号をつけた$100$枚のカードから$1$枚を取り出すとき,そのカードの番号が$4$の倍数または$5$の倍数である確率は$[オ]$,$3$の倍数または$7$の倍数である確率は$[カ]$である.
(4)$2^n$が$4$桁の数となるような自然数$n$は$[キ]$個であり,$12$桁の数となるような自然数$n$は$[ク]$個である.ただし,$\log_{10}2=0.3010$とする.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~ソに当てはまる数または式を記入せよ.

(1)$x$が$0<x<1$と$\displaystyle x^2+\frac{1}{x^2}=3$を満たすとき,$x^3$の値は$[ア]$である.
(2)不等式$\displaystyle \log_5 \left( \frac{x+1}{2} \right)+\log_5(x-4)<2$の解は$[イ]<x<[ウ]$である.
(3)$\sqrt{3} \sin \theta-\cos \theta>1 (-\pi<\theta<\pi)$を満たす$\theta$の範囲は,$[エ]<\theta<[オ]$である.
(4)$3$次方程式$x^3+3x^2-24x-a=0$が,異なる$3$つの実数解をもつような定数$a$の値の範囲は,$[カ]<a<[キ]$である.
(5)積分$\displaystyle \int_{-3}^3 |x^2-1| \, dx$の値は$[ク]$である.
(6)$2$次不等式$ax^2-4x+b<0$の解が$-3<x<5$であるとき,定数$a$は$[ケ]$であり,定数$b$は$[コ]$である.
(7)$2$つのベクトル$\overrightarrow{a}=(2,\ -1,\ 1)$と$\overrightarrow{b}=(x-2,\ -x,\ 4)$のなす角が$30^\circ$のとき,$x$の値は$[サ]$である.
(8)点$(x,\ y)$が直線$2x+3y=4$の上を動くとする.$4^x+8^y$が最小値をとるとき,$x,\ y$の値は$x=[シ]$,$y=[ス]$である.
(9)三角形$\mathrm{ABC}$の$\mathrm{A}$における角度は$45^\circ$,$\mathrm{C}$における角度は$75^\circ$,辺$\mathrm{AC}$の長さが$6$であるとき,辺$\mathrm{BC}$の長さは$[セ]$である.
\mon $0,\ 1,\ 2,\ 3$の数字から選んで$4$桁の自然数を作るとき,同じ数字を何回用いてもよいとすると,$2$の倍数でない自然数は$[ソ]$個できる.
上智大学 私立 上智大学 2011年 第3問
正$n$角形の頂点から同時に$3$点を選び,それらを頂点とする三角形を作る.ただし,どの$3$点が選ばれるかは同様に確からしいとする.

(1)$n=6$のとき,三角形が直角三角形となる確率は$\displaystyle \frac{[マ]}{[ミ]}$である.
(2)$n=8$のとき,三角形が鈍角三角形となる確率は$\displaystyle \frac{[ム]}{[メ]}$である.
(3)$n$が偶数のとき,三角形が直角三角形となる確率は
\[ \frac{[モ]}{n+[ヤ]} \]
であり,三角形が鈍角三角形となる確率は
\[ \frac{[ユ]}{[ヨ]} \left( \frac{n+[ラ]}{n+[リ]} \right) \]
である.
(4)$n$が$6$の倍数のとき,三角形が正三角形以外の二等辺三角形となる確率は
\[ \frac{[ル](n+[レ])}{(n+[ロ])(n+[ワ])} \]
である.ただし,$[ロ]>[ワ]$とする.
スポンサーリンク

「倍数」とは・・・

 まだこのタグの説明は執筆されていません。