タグ「倍数」の検索結果

14ページ目:全225問中131問~140問を表示)
沖縄国際大学 私立 沖縄国際大学 2013年 第3問
以下の各問いに答えなさい.

(1)以下の図において$\overline{A \cap B}$の部分を塗りつぶしなさい.
(図は省略)
(2)$A=\{2x \;|\; 1 \leqq x \leqq 10,\ x \text{は自然数} \}$,$B=\{3y \;|\; 1 \leqq y \leqq 10,\ y \text{は自然数} \}$のとき,$A \cap B$の要素をすべて答えなさい.
(3)命題「$x^2-1=0 \Longrightarrow x=1$または$x=-1$」の対偶を答えなさい.
(4)次の表中$①$~$⑤$( \quad )内に,命題「$p \Longrightarrow q$」が成立するように,次の(ア)~(ケ)から適切なものを \underline{すべて} 選び記号で答えなさい.

\begin{tabular}{|c|c|}
\hline
$p$ & $q$ \\ \hline
犬である. & $①$( \qquad ) \\ \hline
宜野湾市である. & $②$( \qquad ) \\ \hline
$x=5$ & $③$( \qquad ) \\ \hline
$④$ ( \qquad ) & ほ乳類である. \\ \hline
$⑤$ ( \qquad ) & $x=-2$または$x=3$ \\ \hline
\end{tabular}

\begin{screen}
(ア) $x$は偶数である. \quad (イ) $x$は$2$の倍数である. \quad (ウ) $0<x<10$ \\
(エ) 動物である. \quad (オ) 沖縄県である. \quad (カ) 人間である. \\
(キ) $|x| \geqq 5$ \quad (ク) $x^2-x-6=0$ \quad (ケ) $x^2-x+6=0$
\end{screen}
(5)$x+y=2$ならば$x \leqq 1$または$y \leqq 1$であることを背理法によって証明しなさい.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
大阪工業大学 私立 大阪工業大学 2013年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-16x+4=0$の$2$つの実数解を$\alpha,\ \beta$とすると,$\sqrt{\alpha} \sqrt{\beta}=[ア]$であり,$\displaystyle \frac{1}{\sqrt{\alpha}}+\frac{1}{\sqrt{\beta}}=[イ]$である.
(2)三角関数の合成により$\sin \theta+\sqrt{3} \cos \theta=2 \sin (\theta+[ウ])$と表される.ただし,$0<[ウ]<2\pi$とする.また,$0 \leqq \theta \leqq \pi$のとき,$\sin \theta+\sqrt{3} \cos \theta=2$を満たす$\theta$は,$\theta=[エ]$である.
(3)実数$x,\ y$が$2$つの不等式$x^2+y^2 \leqq 1$,$y \geqq 0$を同時に満たすとき,$y-x$の最小値は$[オ]$であり,最大値は$[カ]$である.
(4)$1$から$15$までの数を$1$つずつ書いた$15$枚のカードの中から,同時に$2$枚のカードを引く.このとき,カードの数がどちらも偶数である確率は$[キ]$であり,$2$枚のカードの数の積が$7$の倍数である確率は$[ク]$である.
早稲田大学 私立 早稲田大学 2013年 第4問
自然数の組$(x,\ y,\ z)$が等式$x^2+y^2=z^2$を満たすとする.

(1)すべての自然数$n$について,$n^2$を$4$で割ったときの余りは$0$か$1$のいずれかであることを示せ.
(2)$x$と$y$の少なくとも一方が偶数であることを示せ.
(3)$x$が偶数,$y$が奇数であるとする.このとき,$x$が$4$の倍数であることを示せ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2013年 第3問
$1$から$8$までの各数字が$1$枚に$1$つずつ記入された$8$枚のカードがある.$7$枚を選んで左から順に並べて$7$桁の整数を作るとき,

(1)その整数が$3$の倍数になる場合は何通りか.
(2)その整数が$15$の倍数になる場合は何通りか.
会津大学 公立 会津大学 2013年 第4問
袋の中に,$1$と書かれた玉,$2$と書かれた玉,$3$と書かれた玉,$6$と書かれた玉が$1$つずつ,全部で$4$つ入っている.ここから玉を$1$つ取り出して袋に戻すことを$3$回行う.取り出した玉に書かれた数を順に$a,\ b,\ c$とする.以下の問いに答えよ.

(1)$a+b+c$が奇数になる確率を求めよ.$[イ]$
(2)$a \times b \times c$が偶数になる確率を求めよ.$[ロ]$
(3)$a \times b \times c$が$6$の倍数になる確率を求めよ.$[ハ]$
(4)$a \times b+b \times c+c \times a$が$3$の倍数になる確率を求めよ.$[ニ]$
京都大学 国立 京都大学 2012年 第4問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$つが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$において,$\mathrm{AB}=\mathrm{A}^\prime \mathrm{B}^\prime$,$\mathrm{BC}=\mathrm{B}^\prime \mathrm{C}^\prime$,$\angle \mathrm{A}=\angle \mathrm{A}^\prime$ならば,これら$2$つの三角形は合同である.
京都大学 国立 京都大学 2012年 第5問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$コが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{ABD}$において,$\mathrm{AC}<\mathrm{AD}$かつ$\mathrm{BC}<\mathrm{BD}$ならば.$\angle \mathrm{C} > \angle \mathrm{D}$である.
大阪大学 国立 大阪大学 2012年 第2問
次の2つの条件$\maru{1}, \maru{2}$をみたす自然数$n$について考える.\\
\quad \maru{1} $n$は素数ではない.\\
\quad \maru{2} $l,\ m$を1でも$n$でもない$n$の正の約数とすると,必ず
\[ |l-m| \leqq 2 \]
\qquad である.このとき,以下の問いに答えよ.

(1)$n$が偶数のとき,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
(2)$n$が7の倍数のとき,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
(3)$2 \leqq n \leqq 1000$の範囲で,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
大阪大学 国立 大阪大学 2012年 第2問
次の$2$つの条件$\maru{1}, \maru{2}$をみたす自然数$n$について考える.\\
\quad \maru{1} $n$は素数ではない.\\
\quad \maru{2} $l,\ m$を$1$でも$n$でもない$n$の正の約数とすると,必ず
\[ |l-m| \leqq 2 \]
\qquad である.このとき,以下の問いに答えよ.

(1)$n$が偶数のとき,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
(2)$n$が$7$の倍数のとき,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
(3)$2 \leqq n \leqq 1000$の範囲で,$\maru{1}, \maru{2}$をみたす$n$をすべて求めよ.
スポンサーリンク

「倍数」とは・・・

 まだこのタグの説明は執筆されていません。