タグ「係数」の検索結果

2ページ目:全134問中11問~20問を表示)
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
大阪薬科大学 私立 大阪薬科大学 2016年 第1問
次の問いに答えなさい.

(1)$4$個のさいころを同時に投げるとき,出る目の最大値が$5$以上である確率を$p$,出る目の最大値が$4$以下である確率を$q$とする.このとき,$p$と$q$の間で成り立つ大小関係を次のア~ウのうちからひとつ選べ.ただし,どのさいころも$1$から$6$までの目が同様に確からしく出るとする.

ア:「$p<q$」 \qquad イ:「$p=q$」 \qquad ウ:「$p>q$」

(2)第$2$項が$3$,第$22$項が$33$である等差数列の第$28$項の値を求めよ.
(3)$n$を自然数とする.$(5x+1)^n$の展開式における$x^2$の項の係数が$700$である$n$の値を求めよ.
(4)$\theta$は$0 \leqq \theta<2\pi$を満たす実数とする.$x$の関数
\[ f(x)=2x^3-3(2+\sin \theta)x^2+(1+\sin \theta)(2+\sin \theta)^2 \]
の極小値を$m(\theta)$とし,$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの$m(\theta)$のとり得る最大の値を$M$とする.このとき,$M$の値,および$m(\theta)=M$を満たす$\theta$の値を求めよ.
大阪歯科大学 私立 大阪歯科大学 2016年 第2問
平面上の放物線$y=f(x)$が$2$点$(0,\ 1)$,$(1,\ 0)$を通る.

(1)$f(x)=ax^2+bx+c$とするとき,係数$a,\ b,\ c$が満たす条件を求めよ.
(2)放物線$y=f(x)$が区間$0<x<1$で$x$軸と交差する.このときの$x$座標を$f(x)$の式とともに求めよ.
(3)$y=f(x)$と$x$軸,$y$軸とで囲まれる図形が$2$つの部分からなり,それぞれの面積が互いに等しいという.$f(x)$を求めよ.
東邦大学 私立 東邦大学 2016年 第10問
$a$を定数とし,整式$(a+1)x^2+10xy-3y^2-2ax-12y+a$が異なる$2$つの$1$次式の積に因数分解できるとする.ただし,$2$つの$1$次式の係数は整数とする.このとき,$a$の値は$[ツテ]$である.
玉川大学 私立 玉川大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^2 |x^2-3x+2| \, dx=[ア]$.

(2)$\displaystyle \left( x^2-\frac{1}{2x} \right)^5$の$x$の項の係数は$\displaystyle \frac{[イウ]}{[エ]}$で,$x^7$の項の係数は$\displaystyle \frac{[オカ]}{[キ]}$である.

(3)$\displaystyle \frac{x^2+2x+2}{(x-1)(x^2-x+1)}=\frac{A}{x-1}+\frac{Bx+C}{x^2-x+1}$は$x$について恒等式である.このとき,$A$,$B$,$C$は,
\[ A=[ク],\quad B=[ケコ],\quad C=[サ] \]
である.
(4)方程式$x(x+1)(x+2)=60$の解は,$x=[シ],\ [スセ] \pm \sqrt{[ソタ]}i$である.
(5)$\displaystyle -1,\ \frac{3}{2},\ -1+i,\ -1-i$が$4$次方程式$x^4+ax^3+bx^2+cx+d=0$の解であるとき,
\[ a=\frac{[チ]}{[ツ]},\quad b=\frac{[テト]}{[ナ]},\quad c=[ニヌ],\quad d=[ネノ] \]
である.
(6)関数$y=4^x-2^{x+1}+3 (-1 \leqq x \leqq 2)$は,$x=[ハ]$のとき,最大値$[ヒフ]$をとり,$x=[ヘ]$のとき,最小値$[ホ]$をとる.
(7)$f^\prime(a)$が存在するとき,


$\displaystyle \lim_{h \to 0} \frac{f(a+h)-f(a-h)}{h}=[マ]f^\prime(a),$

$\displaystyle \lim_{h \to 0} \frac{f(a+3h)-f(a+h)}{h}=[ミ]f^\prime(a)$


が成り立つ.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$4$次方程式$x^4-x^3+ax^2+bx+2=0$が$1$と$-2$を解にもつとき,係数$a,\ b$の値を求めると$(a,\ b)=[ ]$である.また,この方程式の他の解を求めると,$[ ]$である.
(2)袋の中に$1$から$13$までの数が$1$つずつ書かれた$13$個の玉が入っている.この袋の中から,$2$個の玉を同時にとり出す.このとき,とり出した玉に書かれた$2$つの数の和が偶数になる確率は$[ ]$である.また,とり出した玉に書かれた数がどちらも$10$以下であったとき,数の和が偶数である条件付き確率は$[ ]$である.
(3)$3$点$\mathrm{A}(1,\ -1,\ 1)$,$\mathrm{B}(2,\ 1,\ -1)$,$\mathrm{C}(4,\ -5,\ 1)$がある.$2$つのベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めると$\cos \theta=[ ]$である.また,$\triangle \mathrm{ABC}$の面積は$[ ]$である.
奈良県立医科大学 公立 奈良県立医科大学 2016年 第2問
$\sin \theta=t$とする.$\sin 5 \theta$を$t$の整式で表したときの$t^3$の係数を求めよ.
熊本大学 国立 熊本大学 2015年 第4問
$f(x)$は$x$の$3$次多項式とし,$x^3$の係数は$1$,定数項は$0$とする.$2$つの異なる実数$\alpha,\ \beta$に対して$f^\prime(\alpha)=f^\prime(\beta)=0$が満たされているとする.以下の問いに答えよ.

(1)$f(\alpha),\ f(\beta)$を$\alpha,\ \beta$を用いて表せ.
(2)不等式$\alpha<\beta<3\alpha$が成り立つとき,$3$次方程式$f(x)=-1$の実数解の個数を求めよ.
熊本大学 国立 熊本大学 2015年 第1問
$f(x)$は$x$の$3$次多項式とし,$x^3$の係数は$1$,定数項は$0$とする.$2$つの異なる実数$\alpha,\ \beta$に対して$f^\prime(\alpha)=f^\prime(\beta)=0$が満たされているとする.以下の問いに答えよ.

(1)$f(\alpha),\ f(\beta)$を$\alpha,\ \beta$を用いて表せ.
(2)不等式$\alpha<\beta<3\alpha$が成り立つとき,$3$次方程式$f(x)=-1$の実数解の個数を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第1問
次の問いに答えよ.

(1)${(x-3y+2z)}^7$の展開式における$x^4y^2z$の項の係数を求めよ.
(2)$a$を定数とし,$0<a<1$とする.不等式
\[ \log_a (a-x-y)>\log_ax+\log_ay \]
が表す領域を図示せよ.
(3)$n$は$3$以上の自然数とする.数学的帰納法によって,次の不等式を証明せよ.
\[ 2^n>\frac{1}{2}n^2+n \]
スポンサーリンク

「係数」とは・・・

 まだこのタグの説明は執筆されていません。