「係数」について
タグ「係数」の検索結果
(1ページ目:全134問中1問~10問を表示) 国立 京都大学 2016年 第5問
実数を係数とする$3$次式$f(x)=x^3+ax^2+bx+c$に対し,次の条件を考える.
\mon[(イ)] 方程式$f(x)=0$の解であるすべての複素数$\alpha$に対し,$\alpha^3$もまた$f(x)=0$の解である.
\mon[(ロ)] 方程式$f(x)=0$は虚数解を少なくとも$1$つもつ.
この$2$つの条件(イ),(ロ)を同時に満たす$3$次式をすべて求めよ.
\mon[(イ)] 方程式$f(x)=0$の解であるすべての複素数$\alpha$に対し,$\alpha^3$もまた$f(x)=0$の解である.
\mon[(ロ)] 方程式$f(x)=0$は虚数解を少なくとも$1$つもつ.
この$2$つの条件(イ),(ロ)を同時に満たす$3$次式をすべて求めよ.
国立 京都大学 2016年 第6問
複素数を係数とする$2$次式$f(x)=x^2+ax+b$に対し,次の条件を考える.
\mon[(イ)] $f(x^3)$は$f(x)$で割り切れる.
\mon[(ロ)] $f(x)$の係数$a,\ b$の少なくとも一方は虚数である.
この$2$つの条件(イ),(ロ)を同時に満たす$2$次式をすべて求めよ.
\mon[(イ)] $f(x^3)$は$f(x)$で割り切れる.
\mon[(ロ)] $f(x)$の係数$a,\ b$の少なくとも一方は虚数である.
この$2$つの条件(イ),(ロ)を同時に満たす$2$次式をすべて求めよ.
国立 福島大学 2016年 第1問
次の問いに答えなさい.
(1)$(a+2b+3c)^6$の展開式における$a^3b^2c$の係数を求めなさい.
(2)実数$x,\ y$が$x^2+y^2 \leqq 2$をみたすとき,$5x+y$の最大値および最小値を求めなさい.
(3)$\log_{10}2=0.3010$を用いて以下の問いに答えなさい.
(i) $5^{15}$の桁数を求めなさい.
(ii) $5^{15}$と$2^{40}$の大小を比較しなさい.
(4)関数$y=x^2+1$および$y=-x^2+2x+4$のグラフで囲まれた図形の面積を求めなさい.
(1)$(a+2b+3c)^6$の展開式における$a^3b^2c$の係数を求めなさい.
(2)実数$x,\ y$が$x^2+y^2 \leqq 2$をみたすとき,$5x+y$の最大値および最小値を求めなさい.
(3)$\log_{10}2=0.3010$を用いて以下の問いに答えなさい.
(i) $5^{15}$の桁数を求めなさい.
(ii) $5^{15}$と$2^{40}$の大小を比較しなさい.
(4)関数$y=x^2+1$および$y=-x^2+2x+4$のグラフで囲まれた図形の面積を求めなさい.
国立 東北大学 2016年 第4問
多項式$P(x)$を
\[ P(x)=\frac{(x+i)^7-(x-i)^7}{2i} \]
により定める.ただし,$i$は虚数単位とする.以下の問いに答えよ.
(1)$P(x)=a_0x^7+a_1x^6+a_2x^5+a_3x^4+a_4x^3+a_5x^2+a_6x+a_7$とするとき,係数$a_0,\ \cdots,\ a_7$をすべて求めよ.
(2)$0<\theta<\pi$に対して,
\[ P \left( \frac{\cos \theta}{\sin \theta} \right)=\frac{\sin 7\theta}{\sin^7 \theta} \]
が成り立つことを示せ.
(3)$(1)$で求めた$a_1,\ a_3,\ a_5,\ a_7$を用いて,多項式$Q(x)=a_1x^3+a_3x^2+a_5x+a_7$を考える.$\displaystyle \theta=\frac{\pi}{7}$として,$k=1,\ 2,\ 3$について
\[ x_k=\frac{\cos^2 k\theta}{\sin^2 k\theta} \]
とおく.このとき,$Q(x_k)=0$が成り立つことを示し,$x_1+x_2+x_3$の値を求めよ.
\[ P(x)=\frac{(x+i)^7-(x-i)^7}{2i} \]
により定める.ただし,$i$は虚数単位とする.以下の問いに答えよ.
(1)$P(x)=a_0x^7+a_1x^6+a_2x^5+a_3x^4+a_4x^3+a_5x^2+a_6x+a_7$とするとき,係数$a_0,\ \cdots,\ a_7$をすべて求めよ.
(2)$0<\theta<\pi$に対して,
\[ P \left( \frac{\cos \theta}{\sin \theta} \right)=\frac{\sin 7\theta}{\sin^7 \theta} \]
が成り立つことを示せ.
(3)$(1)$で求めた$a_1,\ a_3,\ a_5,\ a_7$を用いて,多項式$Q(x)=a_1x^3+a_3x^2+a_5x+a_7$を考える.$\displaystyle \theta=\frac{\pi}{7}$として,$k=1,\ 2,\ 3$について
\[ x_k=\frac{\cos^2 k\theta}{\sin^2 k\theta} \]
とおく.このとき,$Q(x_k)=0$が成り立つことを示し,$x_1+x_2+x_3$の値を求めよ.
国立 福島大学 2016年 第1問
次の問いに答えなさい.
(1)$(a+2b+3c)^6$の展開式における$a^3b^2c$の係数を求めなさい.
(2)実数$x,\ y$が$x^2+y^2 \leqq 2$をみたすとき,$5x+y$の最大値および最小値を求めなさい.
(3)$\log_{10}2=0.3010$を用いて以下の問いに答えなさい.
(i) $5^{15}$の桁数を求めなさい.
(ii) $5^{15}$と$2^{40}$の大小を比較しなさい.
(4)関数$y=x^2+1$および$y=-x^2+2x+4$のグラフで囲まれた図形の面積を求めなさい.
(1)$(a+2b+3c)^6$の展開式における$a^3b^2c$の係数を求めなさい.
(2)実数$x,\ y$が$x^2+y^2 \leqq 2$をみたすとき,$5x+y$の最大値および最小値を求めなさい.
(3)$\log_{10}2=0.3010$を用いて以下の問いに答えなさい.
(i) $5^{15}$の桁数を求めなさい.
(ii) $5^{15}$と$2^{40}$の大小を比較しなさい.
(4)関数$y=x^2+1$および$y=-x^2+2x+4$のグラフで囲まれた図形の面積を求めなさい.
国立 高知大学 2016年 第4問
自然数$n$と多項式$f(x)$に対して,$\displaystyle a_n=\int_{-1}^1 x^{n-1}f(x) \, dx$で与えられる数列$\{a_n\}$を考える.このとき,次の問いに答えよ.
(1)$f(x)$が$2$次式で$a_1=0$のとき,$a_3 \neq 0$を示せ.
(2)$f(x)$が$2$次式で$a_1=1$,$a_2=0$,$\displaystyle a_3=\frac{3}{5}$のとき,一般項$a_n$を求めよ.
(3)$f(x)$を$k$次式とする.$f(x)$の係数の絶対値のうち最大なものを$M$とおくとき,任意の自然数$n$に対して,$\displaystyle |a_{2n|} \leqq \frac{(k+1)M}{2n+1}$が成り立つことを示せ.
(4)任意の多項式$f(x)$に対して$\displaystyle \lim_{n \to \infty}a_n=0$が成り立つことを示せ.
(1)$f(x)$が$2$次式で$a_1=0$のとき,$a_3 \neq 0$を示せ.
(2)$f(x)$が$2$次式で$a_1=1$,$a_2=0$,$\displaystyle a_3=\frac{3}{5}$のとき,一般項$a_n$を求めよ.
(3)$f(x)$を$k$次式とする.$f(x)$の係数の絶対値のうち最大なものを$M$とおくとき,任意の自然数$n$に対して,$\displaystyle |a_{2n|} \leqq \frac{(k+1)M}{2n+1}$が成り立つことを示せ.
(4)任意の多項式$f(x)$に対して$\displaystyle \lim_{n \to \infty}a_n=0$が成り立つことを示せ.
国立 秋田大学 2016年 第1問
次の問いに答えよ.
(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.
\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$
(2)次の値を求めよ.
\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.
\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$
(2)次の値を求めよ.
\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
国立 秋田大学 2016年 第1問
次の問いに答えよ.
(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.
\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$
(2)次の値を求めよ.
\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
(1)次の式で定義される数列$\{a_n\}$がある.
\[ a_1=2,\quad a_{n+1}=a_n+4n-1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
次の項を求めよ.
\mon[$①$] 第$2$項から第$5$項まで
\mon[$②$] 一般項$a_n$
(2)次の値を求めよ.
\mon[$①$] ${(1+x)}^{10}$の展開式における$x^7$の項の係数
\mon[$②$] ${16}^{16}$を$225$で割ったときの余り
私立 山口東京理科大学 2016年 第3問
次の式を展開したとき,$a^{5-k}b^k$の項の係数を$C_k$とする.ただし,$k=0,\ 1,\ \cdots,\ 5$とする.
${(5a+12b)}^5$
(1)係数$C_2$に対して,
\[ \log_{10}C_2=[タ] \log_{10}2+[チ] \log_{10}3+[ツ] \]
が成り立つ.
(2)$2$つの係数$C_3,\ C_4$に対して,
\[ \log_{10}C_4-\log_{10}C_3=[テ] \log_{10}2+[ト] \log_{10}3-[ナ] \]
が成り立つ.
${(5a+12b)}^5$
(1)係数$C_2$に対して,
\[ \log_{10}C_2=[タ] \log_{10}2+[チ] \log_{10}3+[ツ] \]
が成り立つ.
(2)$2$つの係数$C_3,\ C_4$に対して,
\[ \log_{10}C_4-\log_{10}C_3=[テ] \log_{10}2+[ト] \log_{10}3-[ナ] \]
が成り立つ.
私立 慶應義塾大学 2016年 第1問
次の問いに答えよ.
(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,
(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.
(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,
(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.
(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.
(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,
(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.
(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.
(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,
(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.
(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.
(1)整式$P(x)$は実数を係数にもつ$x$の$3$次式であり,$x^3$の係数は$1$である.$P(x)$を$x-7$で割ると$8$余り,$x-9$で割ると$12$余る.方程式$P(x)=0$は$a+bi$を解に持つ.$a,\ b$は$1$桁の自然数であり,$i$は虚数単位とする.
ただし$a,\ b$の組み合わせは,$2a+b$が連続する$2$つの整数の積の値と等しくなるもののうち,$a-b$が最大となるものとする.このとき,
(i) 整式$P(x)$を$(x-7)(x-9)$で割ると,余りは$[$1$]x-[$2$]$である.
(ii) $a=[$3$]$,$b=[$4$]$であり,方程式$P(x)=0$の実数解は$[$5$]$である.
(2)$xy$平面上に曲線$C_1:y=-x^2-x+8$がある.$C_1$上の動点$\mathrm{A}$を点$(1,\ 2)$に関して対称移動した点$\mathrm{B}$の軌跡を$C_2$とする.
$C_1$と$C_2$の$2$つの交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とし,また,$C_1,\ C_2$と直線$x=k$との交点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とする.ただし,$k$は$\alpha<k<\beta$を満たす実数とする.このとき,
(i) $C_2$の方程式は$y=x^2-[$6$]x+[$7$]$である.
(ii) 三角形$\mathrm{QRS}$の面積は$\displaystyle k=\frac{[$8$]}{[$9$]}$で最大となる.
(3)$xy$平面上に,原点$\mathrm{O}$を中心とする単位円$C$と,$y$軸の正の部分を始線として点$\mathrm{O}$を中心に回転する$2$つの動径$L_1,\ L_2$がある.円$C$と$L_1,\ L_2$との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.動径$L_1,\ L_2$の表す角をそれぞれ$\theta_1,\ \theta_2$とおき,$\theta_1=2\pi t,\ \theta_2=-\pi t$とする.ただし$t$は,$t \geqq 0$を満たす実数である.このとき,
(i) 点$\mathrm{P}$と点$\mathrm{Q}$が一致する$t$のうち,$t=0$を除く最小の$t$の値は$\displaystyle \frac{[$10$]}{[$11$]}$である.
(ii) 点$\mathrm{P}$の$y$座標と点$\mathrm{Q}$の$y$座標の和の最小値は$\displaystyle \frac{[$12$][$13$]}{[$14$]}$である.
(4)直角三角形$\mathrm{AOB}$($\angle \mathrm{AOB}={90}^\circ$)に内接する半径$r$の円の中心を$\mathrm{P}$とする.辺$\mathrm{AB}$と円の接点を$\mathrm{Q}$とし,線分$\mathrm{AQ}$の長さを$a$,線分$\mathrm{BQ}$の長さを$b$とする.三角形$\mathrm{AOB}$に対して,自然数$l,\ m,\ n (n<m<l)$は,$l \overrightarrow{\mathrm{OP}}+m \overrightarrow{\mathrm{AP}}+n \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たす.このとき,
(i) 三角形$\mathrm{AOB}$の$3$辺の長さの合計は$[$15$]a+[$16$]b+[$17$]r$である.
(ii) $l=17$のとき,$m=[$18$][$19$]$,$n=[$20$]$であり,$\displaystyle \frac{a}{b}=\frac{[$21$]}{[$22$][$23$]}$である.