タグ「余り」の検索結果

1ページ目:全182問中1問~10問を表示)
東京大学 国立 東京大学 2016年 第4問
以下の問いに答えよ.ただし,$(1)$については,結論のみを書けばよい.

(1)$n$を正の整数とし,$3^n$を$10$で割った余りを$a_n$とする.$a_n$を求めよ.
(2)$n$を正の整数とし,$3^n$を$4$で割った余りを$b_n$とする.$b_n$を求めよ.
(3)数列$\{x_n\}$を次のように定める.
\[ x_1=1,\quad x_{n+1}=3^{x_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
$x_{10}$を$10$で割った余りを求めよ.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
九州大学 国立 九州大学 2016年 第4問
自然数$n$に対して,${10}^n$を$13$で割った余りを$a_n$とおく.$a_n$は$0$から$12$までの整数である.以下の問いに答えよ.

(1)$a_{n+1}$は$10a_n$を$13$で割った余りに等しいことを示せ.
(2)$a_1,\ a_2,\ \cdots,\ a_6$を求めよ.
(3)以下の$3$条件を満たす自然数$N$をすべて求めよ.

(i) $N$を十進法で表示したとき$6$桁となる.
(ii) $N$を十進法で表示して,最初と最後の桁の数字を取り除くと$2016$となる.
(iii) $N$は$13$で割り切れる.
室蘭工業大学 国立 室蘭工業大学 2016年 第3問
$a,\ b,\ c,\ m$を整数とする.

(1)$a-b$と$b-c$がともに$m$の倍数ならば,$a-c$も$m$の倍数であることを示せ.
(2)等式
\[ a^{n+1}-b^{n+1}=a^n(a-b)+b(a^n-b^n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を利用して,すべての自然数$n$に対して$a^n-b^n$は$a-b$の倍数であることを,数学的帰納法により示せ.
(3)$2016$を素因数分解せよ.また,$2^{2016}$を$127$で割った余りを求めよ.
熊本大学 国立 熊本大学 2016年 第3問
自然数$a$に対して
\[ S(a)=\sum_{k=1}^a \frac{1}{\sqrt{k+1}+\sqrt{k}} \]
とおく.以下の問いに答えよ.

(1)和$S(a)$を求めよ.
(2)$S(a)$が整数となる自然数$a$を小さい順に並べた数列を
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.一般項$a_n$を求めよ.
(3)$(2)$の数列$\{a_n\}$について,$a_n (n=1,\ 2,\ 3,\ \cdots)$を$4$で割った余りは$0$か$3$であることを示せ.
(4)$(2)$の数列$\{a_n\}$と自然数$N$に対して和$\displaystyle \sum_{n=1}^N \frac{1}{a_n}$を求めよ.
千葉大学 国立 千葉大学 2016年 第6問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
千葉大学 国立 千葉大学 2016年 第5問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
熊本大学 国立 熊本大学 2016年 第2問
自然数$a$に対して
\[ S(a)=\sum_{k=1}^a \frac{1}{\sqrt{k+1}+\sqrt{k}} \]
とおく.以下の問いに答えよ.

(1)和$S(a)$を求めよ.
(2)$S(a)$が整数となる自然数$a$を小さい順に並べた数列を
\[ a_1,\ a_2,\ a_3,\ \cdots,\ a_n,\ \cdots \]
とする.一般項$a_n$を求めよ.
(3)$(2)$の数列$\{a_n\}$について,$a_n (n=1,\ 2,\ 3,\ \cdots)$を$4$で割った余りは$0$か$3$であることを示せ.
(4)$(2)$の数列$\{a_n\}$と自然数$N$に対して和$\displaystyle \sum_{n=1}^N \frac{1}{a_n}$を求めよ.
宮崎大学 国立 宮崎大学 2016年 第3問
$2$以上の自然数$n$と自然数$a$について,和
\[ 1 \cdot (1+a)+2 \cdot (2+a)+\cdots +(n-1) \cdot \{(n-1)+a\} \]
を$S$とおく.このとき,次の各問に答えよ.

(1)$6$と$n$が互いに素であるとき,すべての自然数$a$に対して,$S$は$n$で割り切れることを示せ.
(2)$n$を$6$で割った余りが$2$であるとき,すべての奇数$a$に対して,$S$は$n$で割り切れることを示せ.
(3)$n$を$6$で割った余りが$3$であるとき,すべての自然数$a$に対して,$S$を$n$で割った余りを,$n$を用いて表せ.ただし,求める余りは,$0$以上$n-1$以下の範囲で求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第2問
次の各問いに答えよ.

(1)整式$P(x)$を$0$でない整式$Q(x)$で割った余りを$R(x)$とおく.方程式$P(x)=0$と$Q(x)=0$の共通解は方程式$Q(x)=0$と$R(x)=0$の共通解であることを示せ.また逆に方程式$Q(x)=0$と$R(x)=0$の共通解は方程式$P(x)=0$と$Q(x)=0$の共通解であることを示せ.
(2)整式$P(x),\ Q(x)$を
\[ P(x)=x^4+2x^3+x^2-1,\quad Q(x)=x^3+2x^2-1 \]
とおく.方程式$P(x)=0$と$Q(x)=0$の共通解をすべて求めよ.
スポンサーリンク

「余り」とは・・・

 まだこのタグの説明は執筆されていません。