タグ「体積」の検索結果

9ページ目:全290問中81問~90問を表示)
中京大学 私立 中京大学 2015年 第7問
底面が直径$D \, \mathrm{mm}$の円であり,高さが$22 \, \mathrm{mm}$の直円柱の容器がある.ただし,底面および側面の厚さは$0 \, \mathrm{mm}$としてよい.この容器に水を満杯に入れ,その上に半径$R=18 \, \mathrm{mm} (2R>D)$の球体を載せたところ,容器の水が溢れだした.その後,球体を取り除くと容器の水位が$5 \, \mathrm{mm}$低くなった.このとき,溢れだした水の体積は$D$を用いて$\displaystyle \frac{[ア]}{[イ]}D^2 \pi \, \mathrm{mm}^3$と表すことができ,容器の底面の直径は$D=[ウエ] \sqrt{[オ]} \, \mathrm{mm}$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第4問
下図のように太陽が雲間から見えた.観察された太陽を半径$r$の円と仮定し,図のように見えた太陽の円周上の$2$点を$\mathrm{A}$,$\mathrm{B}$とし,線分$\mathrm{AB}$の中点を$\mathrm{C}$,円周上に一点$\mathrm{D}$を線分$\mathrm{CD}$と$\mathrm{AB}$が互いに直交するようにとる.$\mathrm{AB}=a$,$\mathrm{CD}=c$とおくとき,$r$と$a,\ c$の関係を式で表わすと$[$8$]$となる.このとき$r$の最小値を$c$を用いて表わすと,$[$9$]$である.また$c<r$の場合,観察された太陽の中心を$\mathrm{O}$とする.この円を$\mathrm{OD}$を通る直径を軸に回転させてできる球において$\mathrm{AB}$を通り$\mathrm{OD}$に垂直な平面で$2$つの図形に分けたとき,点$\mathrm{D}$を含む部分の体積を$a,\ c$を用いて表すと$[$10$]$である.
(図は省略)
大阪市立大学 公立 大阪市立大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において四面体$\mathrm{OABC}$を考える.$\triangle \mathrm{ABC}$の重心を$\mathrm{O}^\prime$,$\triangle \mathrm{OBC}$の重心を$\mathrm{A}^\prime$,$\triangle \mathrm{OCA}$の重心を$\mathrm{B}^\prime$,$\triangle \mathrm{OAB}$の重心を$\mathrm{C}^\prime$とする.次の問いに答えよ.

(1)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}$は平行であることを示せ.
(2)$|\overrightarrow{\mathrm{OA}}|$と$|\overrightarrow{\mathrm{O}^\prime \mathrm{A}^\prime}|$の比を求めよ.
(3)$\triangle \mathrm{OAB}$と$\triangle \mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime$は相似であることを示せ.
(4)$\mathrm{A}$が$\mathrm{P}(1,\ 0,\ 0)$と$\mathrm{Q}(0,\ 2,\ 0)$を結ぶ線分の中点,$\mathrm{B}$が$\mathrm{Q}$と$\mathrm{R}(0,\ 0,\ 3)$を結ぶ線分の中点,$\mathrm{C}$が$\mathrm{R}$と$\mathrm{P}$を結ぶ線分の中点であるとき,四面体$\mathrm{OABC}$の体積$V$と四面体$\mathrm{O}^\prime \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$の体積$V^\prime$を求めよ.
大阪市立大学 公立 大阪市立大学 2015年 第4問
$\mathrm{O}$を原点とする座標空間内に点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(1,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$が与えられている.線分$\mathrm{OC}$を$1$つの対角線とし,線分$\mathrm{AB}$を一辺とする立方体を直線$\mathrm{OC}$の周りに回転して得られる回転体$K$の体積を求めたい.次の問いに答えよ.

(1)点$\mathrm{P}(0,\ 0,\ p) (0<p \leqq 1)$から直線$\mathrm{OC}$へ垂線を引いたときの交点$\mathrm{H}$の座標と線分$\mathrm{PH}$の長さを求めよ.
(2)点$\mathrm{Q}(q,\ 0,\ 1) (0 \leqq q \leqq 1)$から直線$\mathrm{OC}$へ垂線を引いたときの交点$\mathrm{I}$の座標と線分$\mathrm{QI}$の長さを求めよ.
(3)原点$\mathrm{O}$から点$\mathrm{C}$方向へ線分$\mathrm{OC}$上を距離$u (0 \leqq u \leqq \sqrt{3})$だけ進んだ点を$\mathrm{U}$とする.点$\mathrm{U}$を通り直線$\mathrm{OC}$に垂直な平面で$K$を切ったときの切り口の円の半径$r$を$u$の関数として表せ.
(4)$K$の体積を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2015年 第3問
\begin{mawarikomi}{50mm}{
(図は省略)
}
$1$辺の長さが$1$の正五角形$\mathrm{ABCDE}$があり,図のように,$5$本の対角線の交点を$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$,$\mathrm{J}$とする.$\triangle \mathrm{ABF}$,$\triangle \mathrm{BCG}$,$\triangle \mathrm{CDH}$,$\triangle \mathrm{DEI}$,$\triangle \mathrm{EAJ}$を切り取り,残った図形を使って,五角形$\mathrm{FGHIJ}$を底面とする五角錐を作るとき,次の問いに答えよ.

(1)五角形$\mathrm{FGHIJ}$の面積は$\triangle \mathrm{AFJ}$の面積の何倍か.
(2)五角錐の体積を求めよ.

\end{mawarikomi}
岐阜薬科大学 公立 岐阜薬科大学 2015年 第4問
\begin{mawarikomi}{50mm}{
(図は省略)
}
$2$つずつ平行な$3$組の平面で囲まれた立体を平行六面体という.平行六面体$\mathrm{ABCD}$-$\mathrm{EFGH}$があり,
\[ l \overrightarrow{\mathrm{PB}}+m \overrightarrow{\mathrm{PD}}+n \overrightarrow{\mathrm{PE}}=\overrightarrow{\mathrm{GP}} \]
を満たす点$\mathrm{P}$が存在している.ただし,$l+m+n+1 \neq 0$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を,$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AD}}$,$\overrightarrow{\mathrm{AE}}$を用いて表せ.
(2)点$\mathrm{P}$が線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$が満たす条件を求めよ.
(3)点$\mathrm{Q}$が$\triangle \mathrm{BDE}$を含む平面上にある.$\overrightarrow{\mathrm{AQ}}=x \overrightarrow{\mathrm{AB}}+y \overrightarrow{\mathrm{AD}}+z \overrightarrow{\mathrm{AE}}$とするとき,$x,\ y,\ z$が満たす条件を求めよ.
(4)四面体$\mathrm{ABDE}$の体積と四面体$\mathrm{PBDE}$の体積が$2:1$になるとき,$l,\ m,\ n$が満たす条件を求めよ.また,点$\mathrm{P}$がこの条件を満たし,かつ,線分$\mathrm{AG}$上にあるとき,$l,\ m,\ n$の値を求めよ.

\end{mawarikomi}
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
名古屋市立大学 公立 名古屋市立大学 2015年 第4問
空間内の点$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{B}$,$\mathrm{C}$を考える.このとき,ベクトル$\overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OA}_2}$はともに長さが$1$で,角度$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$をなす.また点$\mathrm{B}$は$\mathrm{O}$,$\mathrm{A}_1$,$\mathrm{A}_2$を含む平面$\mathrm{H}$上に存在せず,ベクトル$\overrightarrow{\mathrm{OB}}$は,$\overrightarrow{\mathrm{OA}_1} \cdot \overrightarrow{\mathrm{OB}}=c_1$,$\overrightarrow{\mathrm{OA}_2} \cdot \overrightarrow{\mathrm{OB}}=c_2$を満たす(ただし$c_1,\ c_2$はいずれも$0$でない実数であるとする).さらにベクトル$\overrightarrow{\mathrm{OC}}$は,$\overrightarrow{\mathrm{OC}}=c_1 \overrightarrow{\mathrm{OA}_1}+c_2 \overrightarrow{\mathrm{OA}_2}$のように表され,かつベクトル$\overrightarrow{\mathrm{CB}}$と垂直である.このとき,次の問いに答えよ.

(1)角度$\theta$を求めよ.
(2)$|\overrightarrow{\mathrm{OB}}|^2>{c_1}^2+{c_2}^2$が成り立つことを示せ.ただし,$|\overrightarrow{\mathrm{OB}}|$はベクトル$\overrightarrow{\mathrm{OB}}$の長さを表す.
(3)$c_1=c_2=c$,$|\overrightarrow{\mathrm{OB}}|=b$とする.また,$\overrightarrow{\mathrm{OD}_1}=c \overrightarrow{\mathrm{OA}_1}$,$\overrightarrow{\mathrm{OD}_2}=c \overrightarrow{\mathrm{OA}_2}$となるように,空間上に点$\mathrm{D}_1$,$\mathrm{D}_2$を与える.四面体$\mathrm{D}_1 \mathrm{D}_2 \mathrm{CB}$の体積を,$b,\ c$を用いて表せ.
(4)$(3)$の条件の下で$3$点$\mathrm{D}_1$,$\mathrm{D}_2$,$\mathrm{B}$により定まる平面に対し,点$\mathrm{C}$から垂線を引いたとき,垂線と平面の交点を$\mathrm{T}$とする.このとき,$\mathrm{CT}$の長さを$b,\ c$で表せ.
島根県立大学 公立 島根県立大学 2015年 第3問
$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$がある.面$\mathrm{ABC}$と面$\mathrm{DBC}$のなす角を$\theta$とするとき,次の問いに答えなさい.

(1)$\cos \theta$を求めなさい.
(2)正四面体$\mathrm{ABCD}$の体積$V$を求めなさい.
(3)正四面体$\mathrm{ABCD}$に内接する球の半径$r$を求めなさい.
北九州市立大学 公立 北九州市立大学 2015年 第3問
半径$1$の円を底面とする高さ$2$の円柱がある.下図のように,ひとつの底面を$xy$平面にとり,その中心を原点$\mathrm{O}$にとる.点$\displaystyle \mathrm{A} \left( -\frac{1}{\sqrt{2}},\ 0,\ 0 \right)$および点$\displaystyle \mathrm{B} \left( 0,\ 0,\ \frac{1}{\sqrt{2}} \right)$を通り,$xy$平面と${45}^\circ$の角をなす平面で,円柱を$2$つの立体に分ける.以下の問いに答えよ.

(1)平面$x=a$(ただし,$\displaystyle -\frac{1}{\sqrt{2}} \leqq a \leqq 1$)で小さい方の立体を切ったときの切り口(長方形$\mathrm{PQRS}$)の面積$S(a)$を求めよ.
(2)小さい方の立体の体積$V$を求めよ.
(図は省略)
スポンサーリンク

「体積」とは・・・

 まだこのタグの説明は執筆されていません。