タグ「体積」の検索結果

22ページ目:全290問中211問~220問を表示)
高知工科大学 公立 高知工科大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間に$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(-1,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$がある.次の各問に答えよ.

(1)四面体$\mathrm{OABC}$の体積$V$を求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とおく.原点$\mathrm{O}$を中心とする球面と平面$\alpha$との共有点が$1$点だけのとき,その球面の方程式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
一辺の長さが$a$の正八面体の体積と,この正八面体に内接する球,外接する球の半径を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2012年 第3問
$3$辺の長さが$10,\ 15,\ 15$の二等辺三角形$6$個を側面とし,$1$辺の長さが$10$の正六角形を底面とする正六角錐について,次の問いに答えよ.

(1)表面積と体積を求めよ.
(2)底面と全ての側面に接する球$\mathrm{P}$の半径を求めよ.
(3)球$\mathrm{P}$と全ての側面に接する球$\mathrm{Q}$の半径を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
九州大学 国立 九州大学 2011年 第4問
空間内の$4$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(0,\ 2,\ 3),\quad \mathrm{B}(1,\ 0,\ 3),\quad \mathrm{C}(1,\ 2,\ 0) \]
を考える.このとき,以下の問いに答えよ.

(1)点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面の中心$\mathrm{D}$の座標を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面に点$\mathrm{D}$から垂線を引き,交点を$\mathrm{F}$とする.線分$\mathrm{DF}$の長さを求めよ.
(3)四面体$\mathrm{ABCD}$の体積を求めよ.
大阪大学 国立 大阪大学 2011年 第2問
実数$\theta$が動くとき,$xy$平面上の動点P$(0,\ \sin \theta)$およびQ$(8 \cos \theta,\ 0)$を考える.$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,平面内で線分PQが通過する部分を$D$とする.$D$を $x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第4問
$xy$平面上の2曲線$\displaystyle C_1 : y = \frac{\log x}{x}$と$C_2 : y = ax^2$は点Pを共有し,Pにおいて共通の接線をもっている.ただし,$a$は定数とする.次の問いに答えよ.

(1)関数$\displaystyle y = \frac{\log x}{x}$の増減,凹凸,変曲点を調べ,$C_1$の概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.
(2)Pの座標および$a$の値を求めよ.
(3)不定積分$\displaystyle \int \left( \frac{\log x}{x} \right)^2 \, dx$を求めよ.
(4)$C_1,\ C_2$および$x$軸で囲まれる部分を,$x$軸のまわりに1回転してできる立体の体積$V$を求めよ.
東京大学 国立 東京大学 2011年 第6問
次の問いに答えよ.

(1)$x,\ y$を実数とし,$x>0$とする.$t$を変数とする2次関数$f(t)=xt^2+yt$の$0 \leqq t \leqq 1$における最大値と最小値の差を求めよ.
(2)次の条件を満たす点$(x,\ y)$の全体からなる座標平面内の領域を$S$とする.\\
$x>0$かつ,実数$z$で$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して
\[ 0 \leqq xt^2+yt +z \leqq 1 \]
を満たすようなものが存在する.\\
$S$の概形を図示せよ.
(3)次の条件を満たす点$(x,\ y,\ z)$全体からなる座標空間内の領域を$V$とする.\\
$0 \leqq x \leqq 1$かつ,$0 \leqq t \leqq 1$の範囲の全ての実数$t$に対して,
\[ 0 \leqq xt^2+yt + z \leqq 1 \]
が成り立つ.\\
$V$の体積を求めよ.
千葉大学 国立 千葉大学 2011年 第3問
四角錐$\mathrm{OABCD}$において,底面$\mathrm{ABCD}$は$1$辺の長さ$2$の正方形で,
\[ \mathrm{OA} = \mathrm{OB} = \mathrm{OC} = \mathrm{OD} = \sqrt{5} \]
である.

(1)四角錐$\mathrm{OABCD}$の高さを求めよ.
(2)四角錐$\mathrm{OABCD}$に内接する球$S$の半径を求めよ.
(3)内接する球$S$の表面積と体積を求めよ.
筑波大学 国立 筑波大学 2011年 第3問
$a$を$\displaystyle 0 < \alpha <\frac{\pi}{2}$を満たす定数とする.円$C : x^2 + (y+ \sin \alpha)^2 = 1$および,その中心を通る直線$\ell :y= (\tan \alpha) x - \sin \alpha$を考える.このとき,以下の問いに答えよ.

(1)直線$\ell$と円$C$の2つの交点の座標を$\alpha$を用いて表せ.
(2)等式
\[ 2\int_{\cos \alpha}^1 \sqrt{1-x^2} \, dx+ \int_{-\cos \alpha}^{\cos \alpha} \sqrt{1-x^2} \, dx = \frac{\pi}{2} \]
が成り立つことを示せ.
(3)連立方程式
\[ \left\{
\begin{array}{l}
y \leqq (\tan \alpha)x-\sin \alpha \\
x^2+(y+\sin \alpha)^2 \leqq 1
\end{array}
\right. \]
の表す$xy$平面上の図形を$D$とする.図形$D$を$x$軸のまわりに1回転させてできる立体の体積を求めよ.
スポンサーリンク

「体積」とは・・・

 まだこのタグの説明は執筆されていません。