タグ「体積」の検索結果

16ページ目:全290問中151問~160問を表示)
自治医科大学 私立 自治医科大学 2013年 第23問
$9$つの辺の長さの総和が$9$である正三角柱(底面が正三角形である三角柱)の体積を$V$とする.各辺の長さが変化するとき,$V$の最大値を$M$とする.$\displaystyle \frac{12}{\sqrt{3}}M$の値を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)すべての実数$x$について,$2$次不等式$2x^2-6ax+3a>-4$が成り立つとき,$a$の値の範囲は$[ア]$である.また,$a>0$の範囲で,$2$次関数$y=2x^2-6ax+3a$の最小値が$-4$となるとき,その最小値をとる$x$の値は$[イ]$である.
(2)$\displaystyle \tan \theta+\frac{1}{\tan \theta}=4 (0<\theta<\frac{\pi}{2})$のとき,$\sin \theta \cos \theta=[ウ]$であり,$\sin^3 \theta+\cos^3 \theta=[エ]$である.
(3)実数$k$について,方程式$x^2+y^2-6kx+4(k+1)y+14k^2+7k+2=0$が半径$\sqrt{2}$以上の円を表すとき,$k$の値の範囲は$[オ]$である.また,その円が$y$軸に接するときの円の半径は$[カ]$である.
(4)$12^5$は$[キ]$桁の数であり,$12^n$が$12$桁の数になるときの整数$n$は$[ク]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)展開図が円と半径$l$の扇形からなる直円錐を考える.$l$が一定のとき,この円錐の体積を最大にするような円錐の高さを,$l$で表すと$[ケ]$であり,扇形の中心角は$[コ]$度である.
名城大学 私立 名城大学 2013年 第2問
空間の$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面を$\alpha$とし,原点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.

(1)四面体$\mathrm{OABC}$の体積を求めよ.
(2)$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表し,点$\mathrm{H}$の座標を求めよ.
(3)$\triangle \mathrm{ABC}$の面積を求めよ.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2013年 第3問
$\theta$は$0 \leqq \theta \leqq \pi$をみたす実数とする.$xyz$空間内の平面$z=0$上に$2$点
\[ \mathrm{P}_\theta (\cos \theta,\ \sin \theta,\ 0),\quad \mathrm{Q}_\theta (2 \cos \theta,\ 2 \sin \theta,\ 0) \]
をとり,$\theta$を$0 \leqq \theta \leqq \pi$の範囲で動かすとき,線分$\mathrm{P}_\theta \mathrm{Q}_\theta$が通過する部分を$D$とする.空間内の$z \geqq 0$の部分において,底面が$D$,$\mathrm{P}_\theta \mathrm{Q}_\theta$上の各点での高さが$\displaystyle \frac{2}{\pi}\theta$の立体$K$を考える.半球$B:x^2+y^2+z^2 \leqq 2^2$,$z \geqq 0$と$K$の共通部分を$L$とするとき,次の問いに答えよ.

(1)$B$を平面$z=t (0 \leqq t<2)$で切った切り口の円の半径を$t$を用いて表せ.
(2)$L$の体積を求めよ.
埼玉工業大学 私立 埼玉工業大学 2013年 第4問
一辺の長さが$1$の正四面体$\mathrm{ABCD}$がある.辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,$\angle \mathrm{ADM}=\theta$としたとき,$\cos \theta$の値は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.頂点$\mathrm{A}$から$\mathrm{MD}$へ下ろした垂線を$\mathrm{AH}$とすると,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$であり,この正四面体の体積は$\displaystyle \frac{\sqrt{[ ]}}{[][]}$である.また,この正四面体に内接する球の半径は$\displaystyle \frac{\sqrt{[ ]}}{[][]}$である.
東京電機大学 私立 東京電機大学 2013年 第2問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
東京電機大学 私立 東京電機大学 2013年 第5問
$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\sqrt{5}$,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=2$である四面体$\mathrm{OABC}$を考える.$\mathrm{AB}$の中点を$\mathrm{M}$とし,$\mathrm{M}$から$\mathrm{OC}$に下ろした垂線と$\mathrm{OC}$の交点を$\mathrm{N}$とする.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,$\mathrm{OG}$と$\mathrm{MN}$の交点を$\mathrm{P}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次の問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$の値を求めよ.
(2)$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)四面体$\mathrm{PABG}$の体積は四面体$\mathrm{OABC}$の体積の何倍かを求めよ.
東京女子大学 私立 東京女子大学 2013年 第5問
座標空間における点$\mathrm{A}(2,\ -1,\ 2)$,$\mathrm{B}(-1,\ 1,\ -1)$に対し,以下の設問に答えよ.ただし$\mathrm{O}$は原点を表す.

(1)$\cos \angle \mathrm{AOB}$を求めよ.
(2)$x \geqq 0$の範囲にある点$\mathrm{C}(x,\ y,\ z)$で,$\overrightarrow{\mathrm{OC}}$が$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方と直交し,かつ$|\overrightarrow{\mathrm{CA}}|=5$となるものを求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
早稲田大学 私立 早稲田大学 2013年 第4問
$1$辺の長さが$1$の立方体がある.

(1)この立方体の$8$個の頂点のうちの$4$個を頂点とする正四面体の体積を求めよ.
(2)この立方体の$8$個の頂点のうちの$4$個を頂点とする正四面体と,残りの$4$個を頂点とする正四面体の共通部分の体積を求めよ.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第1問
以下の問いに答えなさい.

(1)次の$2$次方程式を解きなさい.解の分母は有理化しなさい.
\[ (1+\sqrt{3})x^2+(2+\sqrt{3})x+1=0 \]
(2)$\alpha$と$\beta$は$2$次関数$y=ax^2+bx+c$のグラフと$x$軸の共有点の$x$座標であり,$\alpha<-1$と$0<\beta<1$を満たしているものとする.このとき次の式の符号を求め,その理由も示しなさい.ただし,$a<0$とする.
\[ \nagamaruichi -\frac{b}{2a} \qquad \nagamaruni b \qquad \nagamarusan c \qquad \nagamarushi b^2-4ac \qquad \nagamarugo a-b+c \qquad \nagamaruroku a+b+c \]
(3)高さ$5$メートルの像がある.これと同じ材質を用いて,像と相似形で高さ$10$センチメートルのミニチュアを作るとする.このとき次の問いに答えなさい.ただし,像もミニチュアも均質で,中に空洞はないものとする.

(i) もとの像とこのミニチュアの相似比を,最も簡単な整数の比として求めなさい.
(ii) もとの像と同じ体積の材料から何個のミニチュアを作ることができるか.ただし,材料は余すところなくすべて使えるものとする.
(iii) $(ⅱ)$でできたミニチュアすべての表面積の合計はもとの像の表面積の何倍か.
スポンサーリンク

「体積」とは・・・

 まだこのタグの説明は執筆されていません。