タグ「位置」の検索結果

9ページ目:全123問中81問~90問を表示)
西南学院大学 私立 西南学院大学 2012年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\mathrm{O}$を原点として,以下の問に答えよ.

(1)線分$\mathrm{AB}$を$m:n$に内分する点$\mathrm{P}$の位置ベクトルは
\[ \overrightarrow{\mathrm{OP}}=\frac{n}{m+n} \overrightarrow{\mathrm{OA}}+\frac{m}{m+n} \overrightarrow{\mathrm{OB}} \]
で表されることを示せ.
(2)$\alpha,\ \beta$を実数として,点$\mathrm{Q}$を
\[ \overrightarrow{\mathrm{OQ}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}} \]
で表されるベクトルの終点とする.$\alpha,\ \beta$が次のそれぞれの関係式を満たすとき,点$\mathrm{Q}$の存在範囲を図示せよ.ただし,結果に至るプロセスも示すこと.

\mon[$①$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta=1$
\mon[$②$] $\alpha \geqq 0,\ \beta \geqq 0,\ \alpha+\beta \leqq 1$
\mon[$③$] $\alpha \geqq 0,\ \beta \geqq 0,\ 1 \leqq \alpha+\beta \leqq 2$
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[タ]$までに当てはまる$0$から$9$までの数を求めよ.

$1$個のサイコロを$1$回投げ,出た目の回数だけ$1$枚の硬貨を投げることにする.このとき,$xy$平面上において,動点$\mathrm{A}$は原点$(0,\ 0)$から出発し,硬貨を投げるごとに,表が出れば$x$軸方向に$1$移動し,裏が出れば$y$軸方向に$1$移動する.ただし,サイコロを投げたとき,どの目の出る確率も$\displaystyle \frac{1}{6}$で,硬貨を投げたとき,表,裏の出る確率はどちらも$\displaystyle \frac{1}{2}$であるとする.
サイコロの出た目の回数だけ硬貨を投げ終えたときの$\mathrm{A}$の位置を$(x,\ y)$とする.

(1)$(x,\ y)=(0,\ 6)$である確率は$\displaystyle \frac{[ア]}{[イ][ウ][エ]}$である.

(2)$x=y$である確率は$\displaystyle \frac{[オ][カ]}{[キ][ク]}$である.

(3)$y=0$である確率は$\displaystyle \frac{[ケ][コ]}{[サ][シ][ス]}$である.

(4)$x=1$である確率は$\displaystyle \frac{[セ]}{[ソ][タ]}$である.
愛知学院大学 私立 愛知学院大学 2012年 第3問
さいころを投げて,$1$か$5$の目が出たとき,点$\mathrm{P}$は原点から数直線上の正の方向に$2$進み,他の目が出たとき負の方向に$1$進むとする.

(1)さいころを続けて$3$回投げたとき,点$\mathrm{P}$が正の方向$3$の位置にある確率を求めなさい.
(2)さいころを続けて$3$回投げたとき,点$\mathrm{P}$がどの位置にある確率が最も高いか,その位置と確率を求めなさい.
中央大学 私立 中央大学 2012年 第3問
座標平面において,原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円を$C_0$とし,点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$を中心とする半径が$\displaystyle \frac{1}{2}$の円を$C_1$とする.以下の問いに答えよ.

(1)円$C_0$と内接し,円$C_1$と外接する円$D$の半径を$r$,中心$\mathrm{G}$の座標を$(\alpha,\ \beta)$とするとき,$r$を$\alpha$によって表せ.
(2)中心$\mathrm{G}(\alpha,\ \beta)$の軌跡の方程式を求めよ.
以上で考察した円$D$は無数にあるが,これらの円はどれも点$\displaystyle \mathrm{B}(\frac{1}{3},\ 0)$を中心とする半径$\displaystyle \frac{2}{3}$の円$C_2$と特別な位置関係にある.以下ではこのことを調べてみよう.円$D$と円$C_2$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.
(3)直線$\mathrm{PQ}$の方程式を$\alpha,\ \beta$により表せ.
(4)点$\mathrm{P}$の座標$(X,\ Y)$が直線$\mathrm{PQ}$の方程式と円$C_2$の方程式を満たしていることを利用して,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{GP}}=0$を示せ.
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
大阪市立大学 公立 大阪市立大学 2012年 第3問
三角形ABCの頂点A,B,Cは反時計回りに並んでいるものとする.点Pはいずれかの頂点の位置にあり,1枚の硬貨を1回投げるごとに,表が出れば時計回りに隣の頂点へ,裏が出れば反時計回りに隣の頂点へ,移動するものとする.点Pは最初,頂点Aの位置にあったとする.硬貨を$n$回投げたとき,点Pが頂点Aの位置へ戻る確率を$a_n$で表す.次の問いに答えよ.

(1)$n \geqq 2$に対し$a_n$を$a_{n-1}$を用いて表せ.
(2)$a_n$を求めよ.
大阪市立大学 公立 大阪市立大学 2012年 第2問
三角形ABCの頂点A,B,Cは反時計回りに並んでいるものとする.点Pはいずれかの頂点の位置にあり,1枚の硬貨を1回投げるごとに,表が出れば時計回りに隣の頂点へ,裏が出れば反時計回りに隣の頂点へ,移動するものとする.点Pは最初,頂点Aの位置にあったとする.硬貨を$n$回投げたとき,点Pが頂点Aの位置に戻る確率を$a_n$で表す.次の問いに答えよ.

(1)$n \geqq 2$に対し$a_n$を$a_{n-1}$を用いて表せ.
(2)$a_n$を求めよ.
宮城大学 公立 宮城大学 2012年 第4問
数直線上の点$\mathrm{P}$を,サイコロを投げ,偶数の目が出たら正の方向に出た目の数だけ動かし,奇数の目が出たら負の方向に出た目の数だけ動かす.$\mathrm{P}$を最初原点$0$に置き,サイコロを$2$回投げたとき,$\mathrm{P}$の位置する場所について,次の問いに答えよ.ただし,サイコロは$1$から$6$までのどの目も同じ確率で出るものとする.

(1)$\mathrm{P}$が位置する可能性がある点(存在する確率が正の点)をすべて書け.
(2)$\mathrm{P}$が位置する可能性が最も高い点を求めよ.
(3)$\mathrm{P}$の座標の期待値を求めよ.
信州大学 国立 信州大学 2011年 第3問
$\triangle$ABC の外心をOとし,$\overrightarrow{\mathrm{OA}} = \overrightarrow{a},\ \overrightarrow{\mathrm{OB}} = \overrightarrow{b},\ \overrightarrow{\mathrm{OC}} = \overrightarrow{c}$とおく.$|\overrightarrow{a}| = 1$とする.点Oに関する点Pの位置ベクトルが$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$であるとする.

(1)直線APと直線BCは垂直に交わることを示せ.
(2)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b} = -\frac{3}{4}$とする.OP$\para$ABのとき,$\overrightarrow{c}=s\overrightarrow{a}+t\overrightarrow{b}$となる実数$s,\ t$を求めよ.
愛知教育大学 国立 愛知教育大学 2011年 第5問
座標空間内で点Q$(a,\ b,\ c)$を中心とする半径$r$の球を$B$とし,$B$は各座標平面と交わる位置にあるとする.$B$が$xy$平面によって切り取られる立体のうち,Qを含む方を$B_1$,切断面を$D_1$とする.また$B$が$xz$平面によって切り取られる図形のうち,Qを含む方を$B_2$,切断面を$D_2$とする.$D_1$の面積が$8\pi$,$D_2$の面積が$12\pi$,$D_1$と$D_2$が交わってできる線分の長さが4のとき,以下の問いに答えよ.

(1)$D_1,\ D_2$のそれぞれの中心と半径を$a,\ b,\ c,\ r$を用いて表せ.
(2)$b,\ c,\ r$の値を求めよ.
(3)$B_1$と$B_2$の共通部分が$yz$平面によって切り取られた切断面を$D_3$とする.$a$を動かしたときの$D_3$の面積の最大値とそのときの点Qの座標Q$(a,\ b,\ c)$を求めよ.
スポンサーリンク

「位置」とは・・・

 まだこのタグの説明は執筆されていません。