タグ「位置」の検索結果

5ページ目:全123問中41問~50問を表示)
京都大学 国立 京都大学 2013年 第5問
$xy$平面内で,$y$軸上の点$\mathrm{P}$を中心とする円$C$が$2$つの曲線
\[ C_1:y=\sqrt{3}\log (1+x),\quad C_2:y=\sqrt{3}\log (1-x) \]
とそれぞれ点$\mathrm{A}$,点$\mathrm{B}$で接しているとする.さらに$\triangle \mathrm{PAB}$は$\mathrm{A}$と$\mathrm{B}$が$y$軸に関して対称な位置にある正三角形であるとする.このとき$3$つの曲線$C$,$C_1$,$C_2$で囲まれた部分の面積を求めよ.
名古屋大学 国立 名古屋大学 2013年 第2問
平面上に同じ点$\mathrm{O}$を中心とする半径$1$の円$C_1$と半径$2$の円$C_2$があり,$C_1$の周上に定点$\mathrm{A}$がある.点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ$C_1$,$C_2$の周上を反時計回りに動き,ともに時間$t$の間に弧長$t$だけ進む.時刻$t=0$において,$\mathrm{P}$は$\mathrm{A}$の位置にあって$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に同一直線上に並んでいる.$0 \leqq t \leqq 4\pi$のとき$\triangle \mathrm{APQ}$の面積の$2$乗の最大値を求めよ.
鹿児島大学 国立 鹿児島大学 2013年 第1問
次の各問いに答えよ.

(1)四角形$\mathrm{ABCD}$において,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{P}$とし,$\angle \mathrm{DAC}=\angle \mathrm{CBD}$,$\mathrm{AC}=8$,$\mathrm{AP}=2$,$\mathrm{PD}=4$とする.このとき$\mathrm{BD}$の長さを求めよ.
(2)平面上で$2$つの円を考える.共通接線がちょうど$3$本引けるような$2$つの円の位置関係の例を図示せよ.また,$3$本の共通接線も描け.
(3)$3$個のさいころを同時に投げるとき,$3$個の目の積が$3$の倍数である確率を求めよ.
(4)$a,\ b$を実数とする.命題「$ab=0$ならば,$a=0$かつ$b=0$」の逆と対偶を書き,それぞれの真偽を答えよ.
群馬大学 国立 群馬大学 2013年 第11問
$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-1,\ 3)$とし$\overrightarrow{p}=(1-2t)\overrightarrow{a}+t \overrightarrow{b}$とする.$t$は$-1 \leqq t \leqq 1$を動くとする.

(1)$|\overrightarrow{p}|$の最大値を求めよ.
(2)$|\overrightarrow{p}|$の最小値を求めよ.
(3)$|\overrightarrow{p}|$が最小となるときの$\overrightarrow{p}$を位置ベクトルとする点を$\mathrm{M}$とする.$\overrightarrow{a}$を位置ベクトルとする点を$\mathrm{A}$とするとき,$\triangle \mathrm{OAM}$の面積を求めよ.ただし,$\mathrm{O}$は原点である.
名古屋大学 国立 名古屋大学 2013年 第4問
半径1の円盤$C_1$が半径2の円盤$C_2$に貼り付けられており,2つの円盤の中心は一致する.$C_2$の周上にある定点を$\mathrm{A}$とする.図のように,時刻$t=0$において$C_1$は$\mathrm{O}(0,\ 0)$で$x$軸に接し,$\mathrm{A}$は座標$(0,\ -1)$の位置にある.2つの円盤は一体となり,$C_1$は$x$軸上をすべることなく転がっていく.時刻$t$で$C_1$の中心が点$(t,\ 1)$にあるように転がるとき,$0 \leqq t \leqq 2\pi$において$\mathrm{A}$が描く曲線を$C$とする.

(1)時刻$t$における$\mathrm{A}$の座標を$(x(t),\ y(t))$で表す.$(x(t),\ y(t))$を求めよ.
(2)$x(t)$と$y(t)$の$t$に関する増減を調べ,$x(t)$あるいは$y(t)$が最大値または最小値をとるときの$\mathrm{A}$の座標を全て求めよ.
(3)$C$と$x$軸で囲まれた図形の面積を求めよ.
(図は省略)
徳島大学 国立 徳島大学 2013年 第2問
$5$種類の文字$\mathrm{N},\ \mathrm{E},\ \mathrm{S},\ \mathrm{W},\ \mathrm{X}$を重複を許して横一列に$6$個並べた順列を考える.原点から出発して座標平面上を動くことができる点$\mathrm{P}$がある.それぞれの順列に対し,順列の文字を左端から$1$つずつ見てゆき,次の規則に従って点$\mathrm{P}$を動かし点$\mathrm{P}$の最終的な位置を決める.$\mathrm{X}$以外の各文字に対して,点$\mathrm{P}$を次の方向に$1$だけ動かす.

$\mathrm{N}$は$y$軸の正の方向 \quad $\mathrm{E}$は$x$軸の正の方向 \quad $\mathrm{S}$は$y$軸の負の方向 \quad $\mathrm{W}$は$x$軸の負の方向

$\mathrm{X}$に対しては点$\mathrm{P}$は動かさない.例えば,順列$\mathrm{NESNXN}$に対する点$\mathrm{P}$の最終的な位置は$(1,\ 2)$となる.

(1)$x+y=6$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(2)$|x+y|=4$を満たす$(x,\ y)$が点$\mathrm{P}$の最終的な位置となる順列の総数を求めよ.
(3)点$\mathrm{P}$の最終的な位置が原点である順列の総数を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第1問
数直線上の動点$\mathrm{P}$はさいころを投げて偶数が出れば$+1$,奇数が出れば$-1$移動する.$\mathrm{P}$の最初の位置(座標)を$\mathrm{P}_0=0$とし,さいころを$k$回投げたときの$\mathrm{P}$の位置(座標)を順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_k$とする.このとき,次の問いに答えよ.

(1)さいころを$4$回投げたとき,$\mathrm{P}_4=2$となる確率を求めよ.
(2)さいころを$8$回投げたとき,$\mathrm{P}_8=n$となる確率を$n$を用いて表せ.ただし,$n$は$-8 \leqq n \leqq 8$をみたす整数である.
(3)さいころを$4$回投げたとき,$\mathrm{P}_1+\mathrm{P}_2+\mathrm{P}_3+\mathrm{P}_4$が$0$以上となる確率を求めよ.
(4)さいころを$3$回投げたとき,$\mathrm{P}_1+\mathrm{P}_2-\mathrm{P}_3$の期待値を求めよ.
宇都宮大学 国立 宇都宮大学 2013年 第6問
座標平面上で原点$\mathrm{O}$を中心とする半径$1$の円の第$1$象限の部分を$C$とする.曲線$y=f(x) \ (0<x<1)$は第$4$象限にあり,かつすべての$x_1 \ (0<x_1<1)$について,点$(x_1,\ f(x_1))$における接線が$C$上の点$(x_1,\ y_1)$における$C$の接線と直交しているとする.曲線$y=f(x)$上の動点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$f^\prime(x)$を求めよ.
(2)点$\mathrm{P}$における$y=f(x)$の接線と$y$軸との交点を$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さは常に$1$であることを示せ.
(3)$x$軸上と$y$軸上に$2$辺をもち,線分$\mathrm{OP}$を対角線とする長方形の面積を$S$とする.点$\mathrm{P}$が$S$を最大にする位置にあるとき,$\mathrm{P}$は$\mathrm{P}$における曲線の接線と座標軸が交わってできる$2$点の中点であることを示せ.
(4)$f(x)$を求めよ.ただし,$\displaystyle \lim_{x \to 1-0}f(x)=0$であるとする.
山形大学 国立 山形大学 2013年 第2問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
山形大学 国立 山形大学 2013年 第1問
座標平面上に原点$\mathrm{O}$とは異なる$2$点$\mathrm{P}$,$\mathrm{Q}$があり,位置ベクトル$\overrightarrow{p}=\overrightarrow{\mathrm{OP}}$と$\overrightarrow{q}=\overrightarrow{\mathrm{OQ}}$は垂直であるとする.$\overrightarrow{a}=\sqrt{5}\overrightarrow{p}-2 \overrightarrow{q}$,$\overrightarrow{b}=2 \sqrt{5}\overrightarrow{p}+\overrightarrow{q}$とおく.$|\overrightarrow{a}|=|\overrightarrow{b}|$であるとき,次の問に答えよ.

(1)$|\overrightarrow{a}|$,$|\overrightarrow{b}|$を$|\overrightarrow{p}|$,$|\overrightarrow{q}|$を用いて表せ.

(2)$\displaystyle \frac{|\overrightarrow{p}|}{|\overrightarrow{q}|}$の値を求めよ.

(3)$\displaystyle \frac{|\overrightarrow{a}+\overrightarrow{b}|}{|\overrightarrow{a}-\overrightarrow{b}|}$の値を求めよ.

(4)点$\mathrm{P}$が放物線$\displaystyle y=\frac{1}{2}x^2$上にあり,点$\mathrm{Q}$が円$x^2+y^2=15$上にあるとき,$\overrightarrow{p}$,$\overrightarrow{q}$の成分を求めよ.
スポンサーリンク

「位置」とは・・・

 まだこのタグの説明は執筆されていません。