タグ「位置」の検索結果

3ページ目:全123問中21問~30問を表示)
京都大学 国立 京都大学 2014年 第2問
$2$つの粒子が時刻$0$において$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$に位置している.これらの粒子は独立に運動し,それぞれ$1$秒ごとに隣の頂点に等確率で移動していくとする.たとえば,ある時刻で点$\mathrm{C}$にいる粒子は,その$1$秒後には点$\mathrm{A}$または点$\mathrm{B}$にそれぞれ$\displaystyle \frac{1}{2}$の確率で移動する.この$2$つの粒子が,時刻$0$の$n$秒後に同じ点にいる確率$p(n)$を求めよ.
九州工業大学 国立 九州工業大学 2014年 第1問
空間において$1$点$\mathrm{O}$を固定し,$\mathrm{O}$に関する位置ベクトルが$\overrightarrow{p}$である点$\mathrm{P}$を$\mathrm{P}(\overrightarrow{p})$で表す.$4$点$\mathrm{O}$,$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$を頂点とする四面体$\mathrm{OABC}$において,線分$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{BC}$を$s:1-s (0<s<1)$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とし,$\displaystyle \overrightarrow{h}=\overrightarrow{a}-\frac{9}{16} \overrightarrow{b}+\frac{9}{16} \overrightarrow{c}$を位置ベクトルとする平面$\alpha$上の点を$\mathrm{H}(\overrightarrow{h})$とする.$\mathrm{OA}=\mathrm{AB}=3$,$\mathrm{OB}=3 \sqrt{2}$,$\mathrm{OC}=\mathrm{BC}=4$,$\mathrm{AC}=5$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{DE}}$,$\overrightarrow{\mathrm{DF}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$s$を用いて表せ.また,内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(2)線分$\mathrm{OH}$の長さを求めよ.
(3)$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$の定める平面が点$\mathrm{H}$を通るときの$s$の値を求めよ.
(4)$s$を$(3)$で求めた値とするとき,四面体$\mathrm{OAFC}$の体積$V$を求めよ.
山形大学 国立 山形大学 2014年 第1問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
(4)試行を$n$回行うとき,点$\mathrm{P}$の座標が$1$度も$-2$にならず,ちょうど$n$回目に初めて$2$になる確率を求めよ.
九州工業大学 国立 九州工業大学 2014年 第4問
点$\mathrm{P}$は次の$①$,$②$,$③$の規則に従って数直線上を動く.

\mon[$①$] 時刻$0$で,$\mathrm{P}$は整数座標点$0$から$10$のいずれかの位置$i (0 \leqq i \leqq 10)$にある.
\mon[$②$] 時刻$t (t=0,\ 1,\ 2,\ \cdots)$に位置$i (1 \leqq i \leqq 9)$にある$\mathrm{P}$は,$t+1$には確率$\displaystyle p \left( 0<p<\frac{1}{2} \right)$で位置$i+1$に,確率$1-p$で位置$i-1$に移動する.
\mon[$③$] 時刻$t$に位置$0$または$10$にある$\mathrm{P}$は,$t+1$にもその位置に留まる.

以下の問いに答えよ.

(1)$\mathrm{P}$が時刻$0$で位置$2$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
(2)$\mathrm{P}$が時刻$0$で位置$1$にあるとき,時刻$3$で位置$0$にある確率を求めよ.
時刻$0$で位置$i$にある$\mathrm{P}$が,いずれかの時刻で位置$0$に到達する確率を$q_i$とする.ただし,$q_0=1$,$q_{10}=0$である.$1 \leqq i \leqq 9$のとき,$q_{i+1}$,$q_i$,$q_{i-1}$の間には$q_i=pq_{i+1}+(1-p)q_{i-1}$の関係が成り立つ.
(3)$q_{i+1}-q_i=[ ](q_i-q_{i-1})$である.空欄に入る適切な数または式を求めよ.
(4)$q_i$を$q_1$と$p$を用いて表せ.
(5)$q_1$を求め,$q_i$を$p$を用いて表せ.
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
(4)試行を$n$回行うとき,点$\mathrm{P}$の座標が$1$度も$-2$にならず,ちょうど$n$回目に初めて$2$になる確率を求めよ.
山形大学 国立 山形大学 2014年 第2問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
東京学芸大学 国立 東京学芸大学 2014年 第2問
平面上に異なる$3$点$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$,$\mathrm{C}(\overrightarrow{c})$がある.線分$\mathrm{AB}$,$\mathrm{BC}$を$m:n$に内分する点をそれぞれ$\mathrm{P}(\overrightarrow{p})$,$\mathrm{Q}(\overrightarrow{q})$とする.さらに線分$\mathrm{PQ}$を$m:n$に内分する点を$\mathrm{R}(\overrightarrow{r})$とする.$\displaystyle t=\frac{m}{m+n} (0<t<1)$とするとき,下の問いに答えよ.

(1)$\overrightarrow{r}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および$t$を用いて表せ.
(2)$1$辺の長さが$1$の正三角形$\mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対し,上のように点$\mathrm{R}$をとる.直線$\mathrm{AC}$に対して点$\mathrm{B}$と対称な位置にある点を$\mathrm{O}$とする.点$\mathrm{R}$は,点$\mathrm{O}$を中心とし半径$\mathrm{OA}$の円の外部にあることを示せ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第4問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
スポンサーリンク

「位置」とは・・・

 まだこのタグの説明は執筆されていません。