タグ「任意」の検索結果

6ページ目:全118問中51問~60問を表示)
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
東京工業大学 国立 東京工業大学 2012年 第5問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$で定まる$1$次変換を$f$とする.原点$\mathrm{O}(0,\ 0)$と異なる任意の$2$点$\mathrm{P}$,$\mathrm{Q}$に対して$\displaystyle \frac{\mathrm{OP}^\prime}{\mathrm{OP}} = \frac{\mathrm{OQ}^\prime}{\mathrm{OQ}}$が成り立つ.ただし,$\mathrm{P}^\prime,\ \mathrm{Q}^\prime$はそれぞれ$\mathrm{P}$,$\mathrm{Q}$の$f$による像を表す.

(1)$a^2 +c^2 = b^2 +d^2$を示せ.
(2)$1$次変換$f$により,点$(1,\ \sqrt{3})$が点$(-4,\ 0)$に移るとき,$A$を求めよ.
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
高知大学 国立 高知大学 2012年 第1問
次の問いに答えよ.

(1)不等式$x^2+y^2<1$の表す領域を$xy$平面上に図示せよ.
(2)不等式$|x|+|y|<2$の表す領域を$xy$平面上に図示せよ.
(3)実数$x,\ y$が$x^2+y^2<5$をみたすとき,$|x|<3$かつ$|y|<3$が成り立つことを示せ.
(4)任意の実数$x,\ y$に対して,$|x|+|y| \leqq 2\sqrt{x^2+y^2}$が成り立つことを示せ.
高知大学 国立 高知大学 2012年 第3問
$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を負でない実数を成分とする行列とし,$C$を原点を中心とする半径5の円とする.円$C$上の任意の点$(x,\ y)$に対して$\biggl( \begin{array}{c}
X \\
Y
\end{array} \biggr)=A \biggl( \begin{array}{c}
x \\
y
\end{array} \biggr)$で与えられる$X,\ Y$は常に$9X^2-16Y^2=0$をみたしているとする.このとき,次の問いに答えよ.

(1)$A \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr)$を$a,\ b,\ c,\ d$を用いて表せ.
(2)$c=0$のとき,$b$を$d$で表せ.
(3)$A \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr) = \biggl( \begin{array}{c}
4 \\
3
\end{array} \biggr)$となる$A$を1つ求めよ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
旭川医科大学 国立 旭川医科大学 2012年 第4問
曲線$C:y=\log x$上に異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$をとり,$C$の$\mathrm{A}$における接線と$\mathrm{B}$における接線の交点について考える.次の問いに答えよ.

(1)任意に与えられた$a>1$に対して,$2$本の接線の交点がちょうど直線$x=1$上にくるような$b$が唯一つだけ存在し,$b<1$であることを示せ.
(2)$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}\displaystyle \left( \frac{1}{a},\ \log \frac{1}{a} \right) \ (a>1)$について,$2$本の接線の交点の$x$座標が$1$より大きいか小さいかを調べよ.
(3)$k$を自然数とする.$\displaystyle a=1+\frac{1}{k}$として(2)の結果を使って,次の不等式が成り立つことを示せ.
\[ \sum_{k=1}^n \frac{1}{k} > \frac{1}{2} \left( 1+\frac{1}{n} \right) +\log n \quad (n \geqq 2) \]
帯広畜産大学 国立 帯広畜産大学 2012年 第2問
座標平面上の2点A$(6,\ 0)$,B$(-2,\ 4)$を結ぶ線分AB上を点Tが移動する.原点Oと点Tを頂点とし,2辺がそれぞれ$x$軸と$y$軸上にある長方形の面積を$S$とする.また,点Tの座標を$(x,\ f(x))$とし,$S$を$x$の関数として$S(x)$と表す.次の各問に解答しなさい.

(1)$f(x)$と$S(x)$を$x$で表しなさい.さらに,区間$-2 \leqq x \leqq 6$における$y=S(x)$のグラフの概形を図示しなさい.
(2)直線$x=-2$と曲線$y=S(x)$および$x$軸で囲まれた図形の面積を求めなさい.
(3)区間$-2 \leqq x \leqq 4$における任意の$x$の値について,区間$x \leqq t \leqq x+2$における関数$S(t)$の最大値を$x$の関数として$M(x)$と定義する.関数$M(x)$を$x$で表し,さらに$y=M(x)$のグラフの概形を図示しなさい.
滋賀医科大学 国立 滋賀医科大学 2012年 第4問
赤色,青色,黄色の箱を各一箱,赤色,青色,黄色の球を各一個用意して,各球を球と同じ色の箱に入れる.この状態からはじめて,次の操作を$n$回($n \geqq 1$)行う. \\
(操作) \ 三つの箱から二つの箱を任意に選び,その二つの箱の中の球を交換する.

(1)赤球の球が赤色の箱に入っている確率を求めよ.
(2)箱とその中の球の色が一致している箱の個数の期待値を求めよ.
(3)赤色の球が赤色の箱に入っている事象と,青色の球が青色の箱に入っている事象は,互いに独立かどうか,理由を付けて答えよ.
大阪教育大学 国立 大阪教育大学 2012年 第4問
$A$を実数を成分とする行列
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
とし,任意の実数$x$に対して,行列$(xE-A)$を考える.ただし,$E$は$2 \times 2$の単位行列とする.相異なる実数$\alpha,\ \beta$に対して,行列$(\alpha E-A)$,$(\beta E-A)$は逆行列を持たないとき,次の問に答えよ.

(1)$\alpha+\beta=a+d,\ \alpha\beta=ad-bc$であることを示せ.また,$x \neq \alpha,\ x \neq \beta$のとき,$(xE-A)$は逆行列を持つことを示せ.
(2)$x \neq \alpha,\ x \neq \beta$のとき,$(xE-A)$の逆行列の$(i,\ j)$成分を
\[ a_{ij}(x),\quad (i=1,\ 2 \;;\; j=1,\ 2) \]
と表し,
\[ b_{ij}=\lim_{x \to \alpha}x^2(x-\alpha)a_{ij}(x)+\lim_{x \to \beta}x^2(x-\beta)a_{ij}(x) \]
とする.このとき,行列$\left( \begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array} \right)$を$A$を用いて表せ.
スポンサーリンク

「任意」とは・・・

 まだこのタグの説明は執筆されていません。