タグ「任意」の検索結果

3ページ目:全118問中21問~30問を表示)
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
大阪教育大学 国立 大阪教育大学 2014年 第1問
$\alpha,\ \beta$は正の実数とする.次の条件によって定義される数列$\{a_n\},\ \{b_n\}$について,以下の問に答えよ.

$a_1=\alpha,\quad b_1=\beta,$
$a_{n+1}=\alpha a_n-\beta b_n,\quad b_{n+1}=\beta a_n+\alpha b_n \quad (n=1,\ 2,\ 3,\ \cdots)$

(1)$\alpha^2+\beta^2 \leqq 1$が成り立つならば,任意の自然数$n$に対して${a_n}^2+{b_n}^2 \leqq 1$が成り立つことを示せ.
(2)$\displaystyle \alpha=\cos \theta,\ \beta=\sin \theta \left( 0<\theta<\frac{\pi}{2} \right)$と表されているとき,$a_2$,$b_2$,$a_3$,$b_3$を$\theta$を用いて表せ.
(3)$a_{12}=1$,$b_{12}=0$となるような正の実数の組$(\alpha,\ \beta)$を全て求めよ.
福島大学 国立 福島大学 2014年 第4問
次のように定義される数列$\{a_n\}$について,以下の問いに答えなさい.
\[ a_1=2,\quad a_{n+1}=\frac{2{a_n}^3+1}{3{a_n}^2} \]

(1)$a_2$を求めなさい.
(2)任意の自然数$n$について$a_n>1$が成り立つことを数学的帰納法を用いて示しなさい.
(3)任意の自然数$n$について$a_n>a_{n+1}$が成り立つことを示しなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
$1$辺の長さが$1$である正六角形の頂点を時計の針の回り方と逆回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とし,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とする.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[$1$][$2$]}{[$3$]}$,$\displaystyle (2 \overrightarrow{a}+3 \overrightarrow{b}) \cdot (3 \overrightarrow{a}-2 \overrightarrow{b})=\frac{[$4$][$5$]}{[$6$]}$である.
(2)$\overrightarrow{\mathrm{AP}}=2s \overrightarrow{a}+(3-3s) \overrightarrow{b}$で与えられる点$\mathrm{P}$が$\triangle \mathrm{ACF}$の内部に存在するような実数$s$の値の範囲は
\[ \frac{[$7$]}{[$8$]}<s<\frac{[$9$]}{[$10$]} \]
である.
(3)正六角形$\mathrm{ABCDEF}$の外接円を$\mathrm{S}$とする.$\mathrm{S}$の周上の任意の点$\mathrm{Q}$に対して,ベクトル$\overrightarrow{q}=\overrightarrow{\mathrm{AQ}}$は
\[ [$11$][$12$] \overrightarrow{q} \cdot \overrightarrow{q}+[$13$][$14$] \overrightarrow{a} \cdot \overrightarrow{q}+2 \overrightarrow{b} \cdot \overrightarrow{q}=0 \]
をみたす.
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
青山学院大学 私立 青山学院大学 2014年 第5問
行列$A,\ E,\ O$を
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right),\quad E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right),\quad O=\left( \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array} \right) \]
で定め,行列$A$の表す$1$次変換を$f$とする.また,行列$A-E$の逆行列が存在しないとする.このとき,以下の問に答えよ.

(1)等式$A^2-(a+d)A+(a+d-1)E=O$が成り立つことを示せ.
(2)点$\mathrm{P}$を平面上の任意の点とする.$1$次変換$f$による点$\mathrm{P}$の像を$\mathrm{Q}$とし,$f$による点$\mathrm{Q}$の像を$\mathrm{R}$とすると,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は一直線上にあることを示せ.
早稲田大学 私立 早稲田大学 2014年 第1問
$2$つの関数

$f(x)=2x^3-3x^2-12x$
$g(x)=-9x^2+6x+a$

に対して,次の問に答えよ.ただし$a$は定数とする.

(1)$f(x)$の極大値および極小値を与える$x$の値をそれぞれ$\alpha,\ \beta$とおく.$\alpha$および$\beta$の値を求めよ.
(2)任意の$x>\alpha$に対して,$f(x) \geqq g(x)$を満たす$a$の値の範囲を求めよ.
(3)任意の$x_1>\alpha$および任意の$x_2>\alpha$に対して,$f(x_1) \geqq g(x_2)$を満たす$a$の値の範囲を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)$x$についての多項式$P(x)$を$x^2+x+1$で割った余りが$x+1$,$x^2-x+1$で割った余りが$x-1$のとき,$P(x)$を$(x^2+x+1)(x^2-x+1)$で割った余りは$[ア]$である.
(2)関数$f(x)$が次の条件を満たすとき,$f(x)=[イ]$である.
任意の実数$x$に対して,$\displaystyle \int_0^x f(t) \, dt-3 \int_{-x}^0 f(t) \, dt=x^3$
(3)次の等式を満たす最大の整数$a$は$a=[ウ]$である.
\[ \left[ \frac{a}{2} \right]+\left[ \frac{2a}{3} \right]=a \]
ただし,実数$x$に対して,$[x]$は$x$以下の最大の整数を表す.
(4)四面体$\mathrm{ABCD}$において,$\mathrm{AC}=\mathrm{BD}=7$,$\mathrm{AB}=\mathrm{CD}=6$,$\mathrm{BC}=\mathrm{DA}=5$である.$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$を,それぞれ辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上の点とするとき,$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}$の最小値は$[エ]$である.
北里大学 私立 北里大学 2014年 第3問
次の文中の$[ア]$~$[フ]$にあてはまる最も適切な数を答えなさい.

曲線$C$を$y=x^2-6x+13$とし,曲線$C$の接線で点$(p,\ 0)$を通るものを考える.接点の$x$座標を$\alpha$とすると,接線の傾きは$[ア] \alpha+[イ]$,接点の座標は$(\alpha,\ [ウ] \alpha^2+[エ] \alpha+[オ][カ])$であるから,接線の方程式は,
\[ y=([ア] \alpha+[イ])x+[キ] \alpha^2+[ク] \alpha+[ケ][コ] \]
と表される.この直線が点$(p,\ 0)$を通ることから$\alpha$は次の$2$次方程式
\[ \alpha^2+[サ]p \alpha+[シ]p+[ス][セ]=0 \]
を満たす.この方程式は$2$つの解を持つから接線は$2$本存在し,傾きが正である接線の方程式は,
\[ y=[ソ] \left( p+[タ]+\sqrt{p^2+[チ]p+[ツ][テ]} \right) (x+[ト]p) \]
と表される.
任意の$x$における曲線$C$の$y$座標と接線の$y$座標の差は,両者が$x=\alpha$で接しているので,
\[ (x-\alpha)^2 \]
と書ける.これを用いると,曲線$C$と$2$本の接線で囲まれた部分の面積$S$は,
\[ S=\frac{[ナ]}{[ニ]} \left( p^2+[チ]p+[ツ][テ] \right)^{\frac{[ヌ]}{[ネ]}} \]
である.$p$を変化させるとき,$S$は$p=[ノ]$で最小値$\displaystyle \frac{[ハ][ヒ]}{[フ]}$をとる.
東京都市大学 私立 東京都市大学 2014年 第3問
$n$を自然数とする.このとき,次の問に答えよ.

(1)任意の$n$に対し,不等式$n! \geqq 2^{n-1}$が成り立つことを数学的帰納法により証明せよ.
(2)$n \geqq 4$のとき,不等式
\[ 1.7<\sum_{k=1}^n \frac{1}{k!}<2 \]
が成り立つことを示せ.
スポンサーリンク

「任意」とは・・・

 まだこのタグの説明は執筆されていません。