タグ「任意」の検索結果

2ページ目:全118問中11問~20問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第4問
$u$を任意の実数とするとき,次の問いに答えよ.

(1)座標平面上の点$\mathrm{P}(u,\ u-1)$を通り,曲線$y=x^2$に接する直線は,ちょうど$2$本あることを示せ.
(2)$(1)$における$2$直線と曲線$y=x^2$の接点を,それぞれ$\mathrm{A}(\alpha,\ \alpha^2)$,$\mathrm{B}(\beta,\ \beta^2)$とするとき,$\alpha$と$\beta$をそれぞれ$u$の式で表せ.ただし,$\alpha<\beta$とする.
(3)$(1)$における$2$直線と曲線$y=x^2$で囲まれた図形の面積を$S$とするとき,$S$を$u$の式で表せ.
(4)$(3)$で求めた面積$S$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第4問
$n$は任意の自然数,また,$k=1,\ 2,\ \cdots,\ n$について$a_k$は$0 \leqq a_k \leqq k$を満たす整数である.このとき,以下の問に答えよ.

(1)数学的帰納法により,次の等式を示せ.
\[ 1 \cdot 1!+2 \cdot 2!+\cdots +n \cdot n!=(n+1)!-1 \]
(2)$2015=a_1 \cdot 1!+a_2 \cdot 2!+\cdots +a_n \cdot n!$が成り立っているとき,$n$を求めよ.ただし,$a_n \neq 0$とする.
(3)$(2)$の等式を成立させる$a_1,\ a_2,\ \cdots, a_n$を求め,答のみ記入せよ.
上智大学 私立 上智大学 2015年 第2問
座標平面上で$2$つのベクトル
\[ \overrightarrow{p}=(p,\ 0),\quad \overrightarrow{q}=(q,\ 0) \]
を考える.ただし,$0<p<1$,$q>1$とする.$\overrightarrow{x}$を単位ベクトルとして,以下の問に答えよ.

(1)任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{p}$は直交しないことを示せ.
(2)$\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,$|\overrightarrow{x}-\overrightarrow{q}|$を$q$を用いて表せ.
(3)$\overrightarrow{p},\ \overrightarrow{q}$が次の条件をみたすとする.
条件:任意の$\overrightarrow{x}$について$|\overrightarrow{x}-\overrightarrow{p}|:|\overrightarrow{x}-\overrightarrow{q}|=1:2$となる.

(i) $p$および$q$の値を求めよ.
(ii) $\overrightarrow{x}$と$\overrightarrow{x}-\overrightarrow{q}$が直交するとき,原点を始点として$\overrightarrow{x}$,$\overrightarrow{p}$,$\overrightarrow{q}$を図示せよ.
(iii) 実数$a$に対して,
\[ \overrightarrow{s}=\frac{\overrightarrow{x}-\overrightarrow{p}}{|\overrightarrow{x}-\overrightarrow{p}|^3}-a \frac{\overrightarrow{x}-\overrightarrow{q}}{|\overrightarrow{x}-\overrightarrow{q}|^3} \]
とおく.任意の$\overrightarrow{x}$について,$\overrightarrow{x}$と$\overrightarrow{s}$が平行となるときの$a$の値を求めよ.
東洋大学 私立 東洋大学 2015年 第4問
一般項が$\displaystyle a_n=\sin \frac{3n \pi}{7}$で定義される数列$\{a_n\}$の最初の$n$項の和を$\displaystyle S_n=\sum_{k=1}^n a_k$とおく.次の各問に答えよ.

(1)$a_n>0$となるための必要十分条件は,$n$を$[アイ]$で割った余りが$1$,$2$,$[ウ]$,$[エ]$,$[オカ]$,$[キク]$のいずれかとなることである.ただし,$[ウ]<[エ]<[オカ]<[キク]$とする.
(2)任意の自然数$n$に対し,$a_{n+\mkakko{ケ}}=-a_n$が成り立つ.
(3)$a_n$が最大となるための必要十分条件は,$n$を$[コサ]$で割った余りが$[シ]$または$[ス]$となることである.ただし,$[シ]<[ス]$とする.
(4)$S_n$が最大となるための必要十分条件は,$n$を$[セソ]$で割った余りが$[タ]$または$[チツ]$となることである.
西南学院大学 私立 西南学院大学 2015年 第4問
平面上に$2$つの円があり,それぞれの半径は$7$と$4$である.この$2$つの円の中心間の距離を$d$,共通接線の数を$n$とすると,$d$の値に応じて$n$の値が定まる.ただし,共通接線が存在しない場合は$n=0$とする.以下の問に答えよ.

(1)$d$が任意の値をとるとき,$n$の最大値は$[ヌ]$である.
(2)$d \leqq 11$のとき,$n$の最大値は$[ネ]$である.
(3)$d<[ノ]$のとき,$n=0$である.
西南学院大学 私立 西南学院大学 2015年 第6問
原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$がある.$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$を通る直線を$\ell$とするとき,以下の問に答えよ.

(1)$\ell$上の任意の点を$\mathrm{P}(\overrightarrow{p})$とすると,直線$\ell$のベクトル方程式は実数$t$に対して,
\[ \overrightarrow{p}=(1-t) \overrightarrow{a}+t \overrightarrow{b} \cdots\cdots① \]
となることを証明せよ.
(2)$\overrightarrow{a},\ \overrightarrow{b}$のなす角を$2$等分する直線$m$上の任意の点を$\mathrm{Q}(\overrightarrow{q})$とすると,直線$m$のベクトル方程式は,実数$k$に対して,
\[ \overrightarrow{q}=k \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|} +\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となることを証明せよ.
また,$\mathrm{P}(\overrightarrow{p})$が直線$\ell$と直線$m$の交点であるとき,式$①$の$t$を$|\overrightarrow{a}|$と$|\overrightarrow{b}|$で表せ.
九州大学 国立 九州大学 2014年 第2問
以下の問いに答えよ.

(1)任意の自然数$a$に対し,$a^2$を$3$で割った余りは$0$か$1$であることを証明せよ.
(2)自然数$a,\ b,\ c$が$a^2+b^2=3c^2$を満たすと仮定すると,$a,\ b,\ c$はすべて$3$で割り切れなければならないことを証明せよ.
(3)$a^2+b^2=3c^2$を満たす自然数$a,\ b,\ c$は存在しないことを証明せよ.
九州大学 国立 九州大学 2014年 第2問
以下の問いに答えよ.

(1)任意の自然数$a$に対し,$a^2$を$3$で割った余りは$0$か$1$であることを証明せよ.
(2)自然数$a,\ b,\ c$が$a^2+b^2=3c^2$を満たすと仮定すると,$a,\ b,\ c$はすべて$3$で割り切れなければならないことを証明せよ.
(3)$a^2+b^2=3c^2$を満たす自然数$a,\ b,\ c$は存在しないことを証明せよ.
北海道大学 国立 北海道大学 2014年 第4問
図のような格子状の道路がある.$\mathrm{S}$地点を出発して,東または北に進んで$\mathrm{G}$地点に到達する経路を考える.ただし太い実線で描かれた区間$a$を通り抜けるのに$1$分,点線で描かれた区間$b$を通り抜けるのに$8$分,それ以外の各区間を通り抜けるのに$2$分かかるものとする.たとえば,図の矢印に沿った経路では$S$を出発し$\mathrm{G}$に到達するまでに$16$分かかる.
(図は省略)

(1)$a$を通り抜ける経路は何通りあるか.
(2)$a$を通り抜けずに$b$を通り抜ける経路は何通りあるか.
(3)すべての経路から任意に$1$つ選んだとき,$\mathrm{S}$地点から$\mathrm{G}$地点に到達するのにかかる時間の期待値を求めよ.
熊本大学 国立 熊本大学 2014年 第3問
$r$を$r>1$である実数とし,数列$\{a_n\}$を次で定める.
\[ a_1=1,\quad a_{n+1}=\frac{a_n+r^2}{a_n+1} \]
以下の問いに答えよ.

(1)$n$が奇数のとき$a_n<r$,$n$が偶数のとき$a_n>r$であることを示せ.
(2)任意の自然数$n$について,$a_{n+2}-r$を$a_n$と$r$を用いて表せ.
(3)任意の自然数$n$について,次の不等式を示せ.
\[ \frac{a_{2n+2}-r}{a_{2n}-r}<\left( \frac{r-1}{r+1} \right)^2 \]
(4)$\displaystyle \lim_{n \to \infty}a_{2n}$および$\displaystyle \lim_{n \to \infty}a_{2n+1}$を求めよ.
スポンサーリンク

「任意」とは・・・

 まだこのタグの説明は執筆されていません。