タグ「任意」の検索結果

11ページ目:全118問中101問~110問を表示)
岐阜大学 国立 岐阜大学 2010年 第4問
次の設問(\,I\,)と(\,II\,)に答えよ.

\mon[(\,I\,)] $0< \theta < \pi$かつ$\displaystyle \theta \neq \frac{\pi}{2}$とする.$\tan^2 \theta>\sin \theta$を満たす$\sin \theta$の値の範囲を求めよ.
\mon[(\,II\,)] $a,\ b,\ c,\ R,\ \beta$を$a>0,\ b>0,\ c>1,\ R>0,\ 0 \leqq \beta<2\pi$を満たす実数とする.また,任意の実数$\theta$に対して,次の等式が成立しているとする.
\[ \log_c \frac{a^{\sin \theta}}{b^{\cos \theta}}=R \sin (\theta+\beta) \]

(1)$a,\ b,\ c$を用いて,$R,\ \sin \beta,\ \cos \beta$を表せ.
(2)$a=c,\ b=c^{\sqrt{3}}$が成り立つとき,$\beta$の値を求めよ.
岐阜大学 国立 岐阜大学 2010年 第1問
$b$と$d$で実数の定数を表す.次の条件$(*)$を考える.
\[ (*) \quad \text{すべての正の実数}x \text{に対して} \frac{x+b}{x^3+1}< \frac{x+2b+d}{x^3+2} \text{である.} \]
以下の問に答えよ.

(1)$b+d>0$は,$(*)$が成立するための必要条件であることを示せ.
(2)$d>0$は,$(*)$が成立するための必要条件であることを示せ.
(3)$d$を任意の正の実数とする.$(*)$が成立するための必要十分条件として,$b$が満たすべき範囲を$d$を用いて表せ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
$xy$平面上に2つの円
\begin{align}
& C_1:x^2+y^2=16 \nonumber \\
& C_2:(x-6)^2+y^2=1 \nonumber
\end{align}
がある.このとき以下の問いに答えよ.

(1)$C_1$上の点$(a,\ b)$を接点とする接線の方程式を求めよ.
(2)$C_1$と$C_2$の両方に接する接線の方程式をすべて求めよ.
(3)点Pを通る任意の直線が$C_1$または$C_2$の少なくとも一方と共有点を持つとする.このような点Pの存在する領域を図示せよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
$xy$平面上に2つの円
\begin{align}
& C_1:x^2+y^2=16 \nonumber \\
& C_2:(x-6)^2+y^2=1 \nonumber
\end{align}
がある.このとき以下の問いに答えよ.

(1)$C_1$と$C_2$の両方に接する接線の方程式をすべて求めよ.
(2)点Pを通る任意の直線が$C_1$または$C_2$の少なくとも一方と共有点を持つとする.このような点Pの存在する領域を図示せよ.
お茶の水女子大学 国立 お茶の水女子大学 2010年 第2問
$xy$平面上に2つの円
\begin{align}
& C_1:x^2+y^2=16 \nonumber \\
& C_2:(x-6)^2+y^2=1 \nonumber
\end{align}
がある.このとき以下の問いに答えよ.

(1)$C_1$と$C_2$の両方に接する接線の方程式をすべて求めよ.
(2)点Pを通る任意の直線が$C_1$または$C_2$の少なくとも一方と共有点を持つとする.このような点Pの存在する領域を図示せよ.
新潟大学 国立 新潟大学 2010年 第3問
行列$A=\left( \begin{array}{cc}
1 & -3 \\
2 & d
\end{array} \right)$は,ある実数$k$に対して等式$A^2=kA$を満たす.このとき,次の問いに答えよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.

(1)$k$と$d$の値を求めよ.
(2)実数$b$と$c$が等式
\[ (E+bA)(E+2A)=E+cA \]
を満たすとき,$c$を$b$で表せ.
(3)数列$\{a_n\}$が任意の自然数$n$に対して等式
\[ (E+2A)^n=E+a_nA \]
を満たすとき,$a_n$を$n$で表せ.
室蘭工業大学 国立 室蘭工業大学 2010年 第5問
$a,\ b,\ c,\ d$を実数とする.$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とし,2次の正方行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$は$A^2=-E$を満たすとする.

(1)$a=0$のとき,$d,\ bc$の値を求めよ.
(2)(1)の条件のもとで,$E+A$が逆行列をもつことを示せ.さらに,実数$p,\ q$を用いて$(E+A)^{-1}$を$pE+qA$の形で表すとき,$p,\ q$の値を求めよ.
(3)$a$を任意の実数とするとき,$a+d,\ ad-bc$の値を求めよ.
山口大学 国立 山口大学 2010年 第2問
次の初項と漸化式で定まる数列$\{a_n\}$を考える.
\[ a_1=\frac{1}{2},\ a_{n+1}=e^{-a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
ここで,$e$は自然対数の底で,$1<e<3$である.このとき,次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \frac{1}{3}<a_n<1$が成り立つことを示しなさい.
(2)方程式$x=e^{-x}$はただ1つの実数解をもつことと,その解は$\displaystyle \frac{1}{3}$と1の間にあることを示しなさい.
(3)関数$f(x)=e^{-x}$に平均値の定理を用いることによって,次の不等式が成り立つことを示しなさい.
\begin{align}
\frac{1}{3} \text{と1との間の任意の実数}x_1,\ x_2 \text{について,} \nonumber \\
|f(x_2)-f(x_1)| \leqq e^{-\frac{1}{3}} |x_2-x_1| \nonumber
\end{align}
(4)数列$\{a_n\}$は,方程式$x=e^{-x}$の実数解に収束することを示しなさい.
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
南山大学 私立 南山大学 2010年 第2問
$t$を任意の実数として,放物線$C_1:y=x^2-2(3t+2)x+4(3t+5)$を考える.

(1)$C_1$の頂点の座標を$t$で表せ.
(2)$t$の値が変化するとき,$C_1$の頂点が描く曲線$C_2$の方程式を求めよ.また,$C_2$の$y$座標が最大となるときの$t$の値を求めよ.
(3)$(2)$で求めた$C_2$と$x$軸との交点を,$x$座標の小さい順に$\mathrm{P}$,$\mathrm{Q}$とする.また,$\mathrm{PQ}$と平行な線分$\mathrm{RS}$の長さが$\mathrm{PQ}$より小さくなるように,$C_2$上に$2$点$\mathrm{R}$,$\mathrm{S}$を,$x$座標の小さい順にとる.このとき,四角形$\mathrm{PQSR}$の面積の最大値とそのときの$\mathrm{RS}$の長さを求めよ.
スポンサーリンク

「任意」とは・・・

 まだこのタグの説明は執筆されていません。