タグ「仮定」の検索結果

3ページ目:全31問中21問~30問を表示)
千葉大学 国立 千葉大学 2011年 第13問
$a,\ b,\ c$は実数とし,
\[ f(x) = x^4+bx^2+cx+2 \]
とおく.さらに$4$次方程式$f(x)=0$は異なる$2$つの実数解$\alpha,\ \beta$と$2$つの虚数解をもち,
\[ \alpha+\beta=-(a+1),\quad \alpha\beta=\frac{1}{a} \]
を満たすと仮定する.

(1)$b,\ c$を$a$を用いて表せ.
(2)$a$のとり得る値の範囲を求めよ.
(3)$b$のとり得る値の範囲を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第2問
医学部における研究では,いろいろな動物が用いられる.これらの動物を生育して,研究者たちに販売する者の立場から,動物$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を題材にして,以下の問題を考察する.

(1)動物$\mathrm{A}$,$\mathrm{B}$を生育するには,$3$種類の栄養素$p,\ q,\ r$が必要である.生育量(単位$\mathrm{kg}$)と栄養素の量は,ともに実数で示される.
(条件a) $\mathrm{A}$を$x \; \mathrm{kg}$生育するには,$p$が$5x$,$q$が$5x$,$r$が$x$の量,同時に必要である.$\mathrm{A}$の販売価格は$10$万円$/ \mathrm{kg}$である.
(条件b) $\mathrm{B}$を$y \; \mathrm{kg}$生育するには,$p$が$4y$,$q$が$y$,$r$が$2y$の量,同時に必要である.$\mathrm{B}$の販売価格は$5$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$,$r$が$2$の量であると仮定する.このとき,$\mathrm{A}$,$\mathrm{B}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ求めよ.
(2)動物$\mathrm{A}$,$\mathrm{B}$に加えて,動物$\mathrm{C}$も$p,\ q,\ r$の栄養素によって生育できることがわかる.
(条件c) $\mathrm{C}$を$z \; \mathrm{kg}$生育するには,$p$が$2z$,$q$が$3z$,$r$が$z$の量,同時に必要である.$\mathrm{C}$の販売価格は$8$万円$/ \mathrm{kg}$である.
手持ちの栄養素は今,$p$が$5$,$q$が$4$の量であるが,(1)の場合と違って$r$はいくらでも手に入るものと仮定する.次の問い$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{C}$の生育量$z \; \mathrm{kg}$は,$\displaystyle z=k \ \left( 0 \leqq k \leqq \frac{11}{10} \right)$として値を固定し,$\mathrm{A}$,$\mathrm{B}$の生育量をそれぞれ$x \; \mathrm{kg}$,$y \; \mathrm{kg}$として変化させる.このとき,点$(x,\ y)$の動く領域$D(k)$を図示せよ.さらに,$(x,\ y)$がこの領域を動くとき,販売額の最大値を$w(k)$とかく.$w(k)$を$k$の式で表せ.
(ii) $\mathrm{C}$の生育量$z=k$を,$\displaystyle 0 \leqq k \leqq \frac{11}{10}$の範囲から$\displaystyle \frac{11}{10} \leqq k \leqq \frac{4}{3}$の範囲に変更する.このとき,点$(x,\ y)$の動く領域$D(k)$および販売額の最大値$w(k)$はどうなるか,調べよ.
(iii) $\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$をそれぞれ何$\mathrm{kg}$生育すれば,販売額が最大となるか.販売額の最大値,およびそのときの$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の生育量をそれぞれ求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
明治大学 私立 明治大学 2011年 第1問
次の各設問の$[1]$から$[8]$までの空欄と$[ ]$に適当な答えを入れよ.

(1)箱の中に,$1$と書かれたカードが$4$枚.$2$と書かれたカードが$3$枚,$3$と書かれたカードが$2$枚,$4$と書かれたカードが$1$枚ある.箱から同時に$3$枚のカードを取り出すとき,以下の問いに答えよ.

(i) $1$と書かれたカードが少なくとも$1$枚含まれる確率は$[1]$である.
(ii) $3$枚のカードに書かれた数字の和が$5$となる確率は$[2]$である.

(2)$\triangle \mathrm{ABC}$において次が成り立つとき,以下の問いに答えよ.
\[ \sin A:\sin B:\sin C = 13:8:7 \]

(i) $\cos A=[3]$である.
(ii) $\triangle \mathrm{ABC}$の外接円の直径が$13$であるとき,$\triangle \mathrm{ABC}$の面積は$[ ]$である.ただし,分母を有理化して答えよ.

(3)$\triangle \mathrm{OAB}$に対して$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が次の条件を満たすとき.点$\mathrm{P}$が動く部分の面積を求めよ.ただし,$\triangle \mathrm{OAB}$の面積を$1$とする.

(i) $\displaystyle \frac{1}{2} \leqq s+t \leqq 1,\ 0 \leqq s,\ 0 \leqq t$のとき$[4]$.
(ii) $t \leqq s,\ s \leqq 3,\ 0 \leqq t$のとき$[5]$.

(4)$\displaystyle 81^{-x}-\frac{1}{2}\cdot 3^{-2x+2}+2=0$を満たす最大の$x$は$\log_9 [6]$である.
(5)ある星$\mathrm{O}$を中心として同一方向に円軌道を描きながら回っている星$\mathrm{A}$と星$\mathrm{B}$がある.ただし,星$\mathrm{A}$と星$\mathrm{B}$の円軌道は同一平面上にあると仮定する.星$\mathrm{A}$と星$\mathrm{O}$との距離は$0.9$億$\mathrm{km}$で,星$\mathrm{B}$と星$\mathrm{O}$との距離は$1.5$億$\mathrm{km}$である.星$\mathrm{A}$は星$\mathrm{O}$の周りを一周するのに$240$日かかり,星$\mathrm{B}$は$360$日かかる.現在,星$\mathrm{A}$が星$\mathrm{B}$より回転方向に$90^{\circ}$進んだ位置にあるとするとき,星$\mathrm{A}$と星$\mathrm{B}$との距離が最初に最大になるのは,今から$[7]$日後である.また,$60$日後の星$\mathrm{A}$と星$\mathrm{B}$との距離は$[8]$億$\mathrm{km}$である.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第1問
$0$以上の任意の整数$i$に対して,$x$の$i$次式$g_i(x)$を$i=0$のとき$g_0(x)=1$,$i \geqq 1$のとき$\displaystyle g_i(x)=\frac{x(x+1) \cdots (x+i-1)}{i!}$と定義する.

(1)$\displaystyle f(x)=\sum_{i=0}^n a_ix^i$(但し$a_n \neq 0$)を$x$に関する実数係数の$n (\geqq 0)$次式とする.このとき,等式$\displaystyle f(x)=\sum_{i=0}^n c_i \, g_i(x)$が任意の実数$x$について成り立つような実数$c_i$($0 \leqq i \leqq n$,但し$c_n \neq 0$)が一意的に存在することを証明せよ.
(2)$(1)$において,$n>0$のとき等式$\displaystyle f(x)-f(x-1)=\sum_{i=1}^n c_i \, g_{i-1}(x)$が成り立つことを証明せよ.
(3)$F(x) (\neq 0)$を$x$に関する実数係数の$n (\geqq 0)$次式とし,任意の整数$a$に対して$F(a)$が整数であると仮定する.このとき,等式$\displaystyle F(x)=\sum_{i=0}^n d_i \, g_i(x)$が任意の実数$x$について成り立つような整数$d_i$($0 \leqq i \leqq n$,但し$d_n \neq 0$)が一意的に存在することを証明せよ.
奈良県立医科大学 公立 奈良県立医科大学 2011年 第4問
$xy$平面において原点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円を$S$とし,円$S$の任意の点$\mathrm{P}$に対して,点$\mathrm{P}$における円$S$の接線を$L(\mathrm{P})$とおく.
\[ A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right) \]
を全ての成分が実数からなる$2$行$2$列の行列とし,$A$によって定まる$xy$平面の一次変換
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right) \]
を$\varphi$とおく.このとき,円$S$の任意の点$\mathrm{P}$に対して円$S$の点$\mathrm{Q}$が存在し,接線$L(\mathrm{P})$のいかなる点も$\varphi$によって接線$L(\mathrm{Q})$の点に移されると仮定する.

(1)円$S$の点$\mathrm{P}$の座標を$(s,\ t)$として,接線$L(\mathrm{P})$の方程式を求めよ.
(2)行列$A$は逆行列を持つことを証明せよ.
(3)円$S$の点$\mathrm{Q}$は円$S$の点$\mathrm{P}$により一意的に定まることを示し,点$\mathrm{Q}$の座標$(u,\ v)$を点$\mathrm{P}$の座標$(s,\ t)$及び行列$A$の成分$a,\ b,\ c,\ d$を用いて表示せよ.
(4)$xy$平面の一次変換$\varphi$は,原点$\mathrm{O}(0,\ 0)$を中心とする回転か,または原点$\mathrm{O}(0,\ 0)$を通るある直線$\ell$を対称軸とする対称変換のいずれかであることを証明せよ.
帯広畜産大学 国立 帯広畜産大学 2010年 第1問
自然数$n$に対して,$\{a_n\}$は初項$a$,一般項$a_n$の数列であり,$\{b_n\}$ \\
は初項$b$,一般項$b_n$の数列である.座標平面上の点$\mathrm{P}_n(a_n,\ b_n)$, \\
点$\mathrm{P}_{n+1}(a_{n+1},\ b_{n+1})$と点$\mathrm{Q}_n(a_{n+1},\ b_n)$の座標は数列$\{a_n\}$と \\
$\{b_n\}$によって与えられる.また,点$\mathrm{P}_n$と点$\mathrm{P}_{n+1}$を通る直線の傾 \\
き$g_n$と$\triangle \mathrm{P}_n \mathrm{P}_{n+1} \mathrm{Q}_n$の面積$h_n$は,それぞれ$g_n=cb_n,\ h_n=dg_n$で定義され,各点の位置関係は右図のようになる.ここで,$h_n$を一般項とする数列を$\{h_n\}$で表し,また,$d>0$,任意の$n$について$a_{n+1}>a_n,\ h_n>0$と仮定する.
\img{3_2148_2010_1}{50}


(1)数列$\{a_n\},\ \{b_n\}$と$\{h_n\}$の中から等差数列と等比数列を見つけ,それぞれの公差または公比を$c$と$d$で表しなさい.
(2)数列$\{a_n\}$と数列$\{b_n\}$について,それぞれの一般項と,初項から第$n$項までの和を$a,\ b,\ c,\ d$および$n$で表しなさい.
(3)$\displaystyle d=\frac{1}{2}$のとき,$c$の値の範囲を求めなさい.
(4)$\displaystyle b=1,\ d=\frac{1}{2},\ 4h_2-6h_1-1=0$のとき,$c$の値を求めなさい.
(5)$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$と$\mathrm{Q}_1$の各点を用いて,$\alpha=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_2$,$\beta=\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_3$,$\theta=\angle \mathrm{Q}_1 \mathrm{P}_1 \mathrm{P}_3$と定義する.$\displaystyle b=1,\ c=\frac{2}{3},\ d=\frac{1}{2}$のとき,$\tan \alpha,\ \tan \beta$と$\tan \theta$を求めなさい.
浜松医科大学 国立 浜松医科大学 2010年 第4問
ある感染症の対策について考える.感染症の防御のためには感染拡大の試算が必要であり,感染拡大は自然にはその感染症の感染力と,致死性によって予測される.感染経路は,飛沫,接触,飲食などいろいろあり,感染力の制御,つまり感染を広げないために,ワクチン開発はもちろんであるが,外出規制(イベントの自粛や学級閉鎖など),手洗い呼びかけ,などが有効である. \\
ここでは簡単のために,$1$つの感染症のみを考え,ある一定の集団(たとえば$1000$人程度の島)を対象とし,外部との接触,出入りがないと仮定する.最初の時点での過去感染者,未感染者,現在感染者の割合をそれぞれ$x_0,\ y_0,\ z_0$とする.現在感染者は$1$か月後にはすべて過去感染者となり,一度感染した人はもう感染しない.また幸いなことにこの感染により死者は生じず,また簡単のために他要因による死者,あるいは出生,転入出もないとする. \\
$1$か月ごとの変動を見ることとし,$i$か月後の時点の上記の割合をそれぞれ$x_i,\ y_i,\ z_i$で示す.症状は丁度$1$か月続くので,一人の人が現在感染者として数えられるのは$1$回のみである. \\
過去感染者は,それまでの過去感染者に,$1$か月前の現在感染者を足したものである.また,現在感染者は,$1$か月前の未感染者と$1$か月前の現在感染者の接触頻度と,この感染症の感染力によって決まる.接触頻度の係数を$a$,感染力の係数を$b$とすると,現在感染者の割合は$1$か月前の現在感染者の割合,未感染者の割合,$a,\ b$の$4$つをかけたもので求められる. \\
$x_0=0$,$y_0=0.9$,$z_0=0.1$として,以下の問いに答えよ.計算は小数点以下第$4$位を四捨五入して求めよ.

(1)$x_i,\ y_i,\ z_i$を,$x_{i-1},\ y_{i-1},\ z_{i-1},\ a,\ b$で表せ.
(2)$a=1,\ b=1$として,$x_1,\ y_1,\ z_1,\ x_2,\ y_2,\ z_2,\ x_3,\ y_3,\ z_3$をそれぞれ求めよ.
(3)$a=1$,感染力の係数$b$を$2$とした時の$x_1,\ x_2,\ x_3$を求めよ.
(4)手洗いの徹底や外出規制が最初からなされたとして,$a=0.5$,$b=1$とした時の,$x_1,\ x_2,\ x_3$を求め,(2),(3)の結果と共に,縦軸を過去感染者の割合,横軸を時間として,$3$つの場合の変化を同一座標上にグラフで示せ.
中央大学 私立 中央大学 2010年 第2問
地球が半径$6378 \, \mathrm{km}$の完全な球であると仮定する.地球の中心を$\mathrm{O}$,北緯$45$度,東経$150$度の地点を$\mathrm{A}$,南緯$45$度,西経$120$度の地点を$\mathrm{B}$とする.このとき,次の問いに答えよ.

(1)$\angle \mathrm{AOB}$の大きさを求めよ.
(2)$\mathrm{A}$から$\mathrm{B}$へ地球の表面上を最短の時間で移動するときの$\mathrm{AB}$間の距離を求めよ.ただし,円周率の値は$3.14$とする.
大阪府立大学 公立 大阪府立大学 2010年 第3問
単位行列$E$の実数倍ではない行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$を考える.$A$で表わされる$xy$平面上の移動を$f$とする.

(1)$A^2=kE$を満たす実数$k$が存在するための必要十分条件は,$a+d=0$であることを示せ.
(2)$a+d=0$のとき,原点Oとは異なる点Pで,$f(P)$が直線OP上にあるものが存在すれば,$a^2+bc \geqq 0$であることを示せ.
(3)$a+d=0$かつ$a^2+bc \geqq 0$であるとする.このとき$\lambda=\sqrt{a^2+bc}$とおけば,$(A-\lambda E)(A+\lambda E)=O$が成り立つことを示せ.ただし,$O$は零行列とする.
(4)(3)の仮定のもとで,$\lambda=\sqrt{a^2+bc}$とおく.原点Oとは異なる点Pで,$\text{Q}=f(P)$とすれば,$\overrightarrow{\mathrm{OQ}}=\lambda \overrightarrow{\mathrm{OP}}$となるものが存在することを示せ.
スポンサーリンク

「仮定」とは・・・

 まだこのタグの説明は執筆されていません。