タグ「交点」の検索結果

99ページ目:全1364問中981問~990問を表示)
昭和大学 私立 昭和大学 2012年 第4問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=2$,$\mathrm{AB}=3$,$\mathrm{BO}=3$である.$\angle \mathrm{A}$の二等分線と$\mathrm{OB}$との交点を$\mathrm{C}$,辺$\mathrm{OA}$の中点を$\mathrm{D}$,線分$\mathrm{CD}$および$\mathrm{BA}$をそれぞれ延長したときの交点を$\mathrm{E}$とする.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OB}}$となる実数$k$の値を求めよ.
(2)$\overrightarrow{\mathrm{OE}}=p \overrightarrow{\mathrm{OA}}+q \overrightarrow{\mathrm{OB}}$となる実数$p$と$q$の値をそれぞれ求めよ.
(3)$\triangle \mathrm{OAB}$の面積$S$により$\triangle \mathrm{BCE}$の面積を$aS$と表すとき,実数$a$の値を求めよ.
昭和大学 私立 昭和大学 2012年 第2問
$1$辺の長さが$1$の正三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$上に$\displaystyle \mathrm{AM}=\frac{2}{3}$となる点$\mathrm{M}$をとる.また,辺$\mathrm{OA}$上に$\mathrm{OP}=p (0<p<1)$となる点$\mathrm{P}$をとり,線分$\mathrm{OM}$と線分$\mathrm{BP}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ p$で表せ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ p$で表せ.
(3)三角形$\mathrm{OPQ}$が二等辺三角形となるような$p$の値を求めよ.
昭和大学 私立 昭和大学 2012年 第4問
次の各問に答えよ.

(1)$2$つの曲線$\displaystyle y=\frac{1}{\sqrt{3}}x(x-\sqrt{3})$および$\displaystyle x=\frac{1}{\sqrt{3}}y(y-\sqrt{3})$がある.

(i) この$2$つの曲線の交点を求めよ.
(ii) この$2$つの曲線によって囲まれる部分の面積を求めよ.

(2)$\displaystyle \lim_{x \to \infty}(a \sqrt{2x^2+x+1}-bx)=2$が成り立つような実数$a,\ b$の値を求めよ.
(3)$x \geqq 0$のとき,$x$の関数$\displaystyle f(x)=\int_0^x 3^t(3^t-4)(x-t) \, dt$の最小値を与える$x$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2012年 第2問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$があり,次の式を満たしている.
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]

(i) $\overrightarrow{\mathrm{AP}}=[ ] \overrightarrow{\mathrm{AB}}+[ ] \overrightarrow{\mathrm{AC}}$である.
(ii) $2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ ]$の比に内分する.また点$\mathrm{P}$は線分$\mathrm{AQ}$を$[ ]$の比に内分する.

(2)円に内接する四角形$\mathrm{ABCD}$において$\mathrm{AB}=1$,$\mathrm{AD}=2$,$\angle \mathrm{BCD}={60}^\circ$であるとき$\mathrm{BD}=[ ]$であり,外接円の半径$R=[ ]$である.また$\mathrm{CD}=3 \mathrm{BC}$のとき$\mathrm{BC}=[ ]$であり,四角形$\mathrm{ABCD}$の面積は$[ ]$である.
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
大阪学院大学 私立 大阪学院大学 2012年 第4問
$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=5$の直角三角形$\mathrm{ABC}$の外接円を$\mathrm{O}$とする.下図のように,辺$\mathrm{BC}$上に点$\mathrm{P}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}$との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$における円$\mathrm{O}$の接線と辺$\mathrm{AB}$の延長との交点を$\mathrm{R}$とする.$\mathrm{BP}=3$のとき,次の問いに答えなさい.
(図は省略)

(1)$\mathrm{AQ}$を求めなさい.
(2)$\mathrm{BQ}$を求めなさい.
(3)$\mathrm{QR}$は$\mathrm{BR}$の何倍かを求めなさい.
(4)$\mathrm{BR}$を求めなさい.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
神戸薬科大学 私立 神戸薬科大学 2012年 第4問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)関数$\displaystyle f(x)=\cos^4 x-\sin^4 x+\frac{1}{2} \sin x \sin 2x+3 \cos x (0 \leqq x \leqq \pi)$とする.$t=\cos x$とおき$f(x)$を$t$の式で表すと,$f(x)=[ ]$である.$f(x)$は$\cos x=[ ]$のとき最大値$[ ]$をとり,$\cos x=[ ]$のとき最小値$[ ]$をとる.
(2)半円$C_1:x^2+y^2=2 (y \geqq 0)$と放物線$C_2:y=ax^2+1-a (a<-1)$とで囲まれた図形の面積$S$を求めたい.

(i) $C_1$と$C_2$の交点を求めると$[ ]$である.
(ii) $C_1$と$C_2$のグラフおよび$(1)$で求めた交点を図示せよ.
(iii) 面積$S=[ ]$である.
近畿大学 私立 近畿大学 2012年 第2問
$f(x)=x^2-4x+7$とし,放物線$y=f(x)$上の$2$点$\mathrm{A}(t,\ f(t))$,$\mathrm{B}(t+a,\ f(t+a)) (a>0)$における$y=f(x)$の接線をそれぞれ$\ell_\mathrm{A}$,$\ell_\mathrm{B}$とする.また$\ell_\mathrm{A}$と$\ell_\mathrm{B}$の交点を$\mathrm{P}$とする.

(1)点$\mathrm{P}$の座標は
\[ \left( t+\frac{a}{[ア]},\ t^{[イ]}+(a-[ウ])t-[エ]a+[オ] \right) \]
である.このことから,$t$が変化するとき,点$\mathrm{P}$は曲線
\[ y=x^{[カ]}-[キ]x-\frac{a^{[ク]}}{[ケ]}+[コ] \]
上を動く.
(2)$\mathrm{AB}=\mathrm{AP}$となる実数$t$が存在するための必要十分条件は$\displaystyle a \geqq \frac{[サ]}{[シ]}$である.
法政大学 私立 法政大学 2012年 第3問
関数$f(x)=x^3+2x^2+x-3$について,つぎの問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を実数とする.曲線$y=f(x)$上の異なる$2$点$(a,\ f(a))$,$(-a,\ f(-a))$における接線をそれぞれ$\ell_1$,$\ell_2$とするとき,$\ell_1$と$\ell_2$の交点の軌跡を表す曲線$y=g(x)$を求めよ.
(3)曲線$y=g(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。