タグ「交点」の検索結果

96ページ目:全1364問中951問~960問を表示)
南山大学 私立 南山大学 2012年 第1問
$[ ]$の中に答を入れよ.

(1)方程式$|3x-2|+x-5=1$を解くと$x=[ア]$である.また,不等式$2x^2-4>|x-1|$を解くと$[イ]$である.
(2)実数$a$に対し,$3$次方程式$x^3+(a-2)x^2+(16-2a)x-32=0$を考える.この方程式の解のうち$a$によらない解は$x=[ウ]$である.また,この方程式が$2$重解をもつような$a$の値を求めると$a=[エ]$である.
(3)$0<a<1$のとき,$x$についての方程式
\[ \log_2 (8ax-1)+\frac{\log_a (x-a)}{\log_a 2}+1=\log_2 2a \]
の解を$a$で表すと$x=[オ]$である.また,この解を最小にする$a$の値を求めると$a=[カ]$である.
(4)円に内接する四角形$\mathrm{ABCD}$の各辺の長さを$\mathrm{AB}=3$,$\mathrm{BC}=6$,$\mathrm{CD}=6$,$\mathrm{DA}=4$とし,対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{E}$とする.このとき,線分$\mathrm{AE}$,$\mathrm{BE}$の長さの比$\displaystyle \frac{\mathrm{AE}}{\mathrm{BE}}$の値を求めると$\displaystyle \frac{\mathrm{AE}}{\mathrm{BE}}=[キ]$であり,$\mathrm{AE}$の長さを求めると$\mathrm{AE}=[ク]$である.
明治大学 私立 明治大学 2012年 第3問
空欄$[ ]$に当てはまるものを入れよ.

$t$を正の実数とする.座標平面上の放物線$C_1:y=x^2$上の点$\mathrm{P}(t,\ t^2)$における$C_1$の接線を$\ell_1$とする.$\mathrm{P}$において$\ell_1$と直交する直線を$\ell_2$とし,$\mathrm{P}$において$\ell_2$に接する放物線$C_2:y=-x^2+ax+b$を考える.次の問に答えよ.
(1)$C_1$と$C_2$のもう一つの交点$\mathrm{Q}$は$([ア],\ [イ])$であり,線分$\mathrm{PQ}$の長さは$([ウ])^{[エ]}$である.
(2)$C_1$と$C_2$によって囲まれる部分の面積$S$は
\[ \frac{[オ]}{[カ]} \cdot ([キ])^{[ク]} \]
であり,$S$は$\displaystyle t=\frac{[ケ]}{[コ]}$のときに最小値$\displaystyle \frac{[サ]}{[シ]}$を取る.

(3)$C_2$の頂点$\mathrm{R}$は$([ス],\ [セ]+[ソ])$であり,$\triangle \mathrm{PQR}$の重心の軌跡は
\[ y=\frac{[タ]}{[チ]}x^2+\frac{[ツ]}{[テ]} \]
である.
学習院大学 私立 学習院大学 2012年 第4問
$a,\ b$を正の実数とする.

(1)放物線$C:y=-ax^2+b$が放物線$y=x^2$と直交するとき,$b$を$a$で表せ.ただし,$2$つの放物線が直交するとは,それらが交わり,各交点でそれらの接線が直交することをいう.
(2)$C$は(1)の条件を満たすとする.$C$と放物線$y=cx^2+d$が直交するとき,$d$を$c$で表せ.
東京理科大学 私立 東京理科大学 2012年 第3問
$k>0$として,座標平面上の曲線$C:y=e^{kx}$を考える.曲線$C$上の点$\mathrm{P}$を,$\mathrm{P}$における$C$の接線$\ell_1$が原点$\mathrm{O}$を通るようにとる.また,点$\mathrm{P}$を通リ$\ell_1$と直交する直線を$\ell_2$とし,図のように,曲線$C$,直線$\ell_2$,$x$軸,$y$軸の$4$つで囲まれた図形を$A$とする.ただし,$e$は自然対数の底である.
(図は省略)

(1)点$\mathrm{P}$の座標と,直線$\ell_2$と$x$軸との交点の座標を求めよ.
(2)図形$A$を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
(3)$k$が$k>0$を動くとき,$(2)$で求めた$V$の最小値と,それを与える$k$の値を求めよ.
中央大学 私立 中央大学 2012年 第2問
平面上に$2$本の平行な直線の組が$n$組ある.異なる組の直線は平行ではなく,どの$3$本の直線も$1$点で交わることはないとする.これら$2n$本の直線の交点の総数を$a_n$,平面がこれら$2n$本の直線によって分けられている部分の個数を$b_n$とする.このとき,以下の問いに答えよ.

(1)$a_{n+1}$と$a_n$の関係式を求めよ.
(2)$a_n$を求めよ.
(3)$b_{n+1}$と$b_n$の関係式を求めよ.
(4)$b_n$を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.ただし$(2)$において,適切な$t$の値が複数個ある場合は,それらをすべて記入しなさい.

放物線$y=x^2$を$C$とする.$C$上に点$\mathrm{P}(-1,\ 1)$をとり,$\mathrm{P}$における$C$の法線と$C$との交点のうち,$\mathrm{P}$と異なるものを$\mathrm{Q}$とする.また$t$を実数として,点$\mathrm{P}$をとおって傾きが$t$の直線を$\ell_1$とし,点$\mathrm{Q}$をとおって$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)点$\mathrm{Q}$の座標は$([あ],\ [い])$である.
(2)点$\mathrm{R}$が点$\mathrm{P}$,$\mathrm{Q}$と異なるように$t$を変化させるときの$\triangle \mathrm{PQR}$の面積の最大値は$[う]$である.また$\triangle \mathrm{PQR}$の面積を最大にする$t$の値をすべて求めると$t=[え]$である.
(3)点$\mathrm{P}$,$\mathrm{Q}$とは異なる$C$上の点$\mathrm{T}(u,\ u^2)$を考える.$\overrightarrow{\mathrm{TP}} \cdot \overrightarrow{\mathrm{TQ}}<0$となるような$u$の範囲は
\[ [お]<u<[か] \]
である.
(4)点$\mathrm{R}$が,不等式$y<x^2$の表す領域に入るような$t$の範囲は
\[ [き]<t<[く] \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
$a$を正の定数とし,座標平面において放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸の交点を$\mathrm{R}$とする.$x$軸上の点$\mathrm{Q}$を,$\mathrm{RP}=\mathrm{RQ}$を満たし,その$x$座標が$\mathrm{R}$の$x$座標より大きいものとする.

(1)点$\mathrm{P}$を通り$\ell$と直交する直線の方程式を求めよ.
(2)点$\mathrm{Q}$の座標を求めよ.
(3)直線$\ell$と点$\mathrm{P}$において接し$x$軸とも接する円で,中心が第$1$象限にあるものを考える.この円の中心の座標を$(q,\ r)$とするとき,$q,\ r$を$t$と$a$を用いて表せ.
(4)$(3)$の$q,\ r$に対して,$t$が$0$に限りなく近づくときの,$\displaystyle \frac{q}{t},\ \frac{r}{t^2},\ \frac{r}{q^2}$の極限値をそれぞれ求めよ.
東京理科大学 私立 東京理科大学 2012年 第4問
平面上で点$\mathrm{O}$を中心とする半径$2$の円の内側に$\mathrm{OP}=1$となる点$\mathrm{P}$をとる.点$\mathrm{P}$で垂直に交わる$2$直線と円との交点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.

(1)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$\displaystyle \frac{3}{5}$のとき,四角形$\mathrm{ABCD}$の面積は
\[ \frac{[ア][イ]}{[ウ][エ]} \sqrt{[オ][カ]} \]
である.
(2)$\mathrm{O}$と直線$\mathrm{AC}$との距離が$h$のとき,四角形$\mathrm{ABCD}$の面積を$S$とおくと,
\[ S^2=-[キ]h^4+[ク]h^2+[ケ][コ] \]
であり,$S$の最大値は$[サ]$,最小値は$[シ] \sqrt{[ス]}$である.
(3)三角形$\mathrm{ABP}$の面積を$S_1$,三角形$\mathrm{CDP}$の面積を$S_2$とおくと,
\[ S_1 \cdot S_2=\frac{[セ]}{[ソ]} \]
が成り立ち,$S_1+S_2$の最小値は$[タ]$であり,最大値は$[チ]$である.
日本女子大学 私立 日本女子大学 2012年 第4問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$上に点$\mathrm{R}$,辺$\mathrm{BC}$上に点$\mathrm{P}$,辺$\mathrm{CA}$上に点$\mathrm{Q}$を
\[ \mathrm{AR}:\mathrm{RB}=\mathrm{BP}:\mathrm{PC}=\mathrm{CQ}:\mathrm{QA}=2:1 \]
となるようにとる.線分$\mathrm{AP}$と線分$\mathrm{BQ}$の交点を$\mathrm{X}$,線分$\mathrm{BQ}$と線分$\mathrm{CR}$の交点を$\mathrm{Y}$,線分$\mathrm{CR}$と線分$\mathrm{AP}$の交点を$\mathrm{Z}$とする.

(1)$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおくとき,$\overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{BQ}}$,$\overrightarrow{\mathrm{CR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{AX}}=k \overrightarrow{\mathrm{AP}}$,$\overrightarrow{\mathrm{BX}}=\ell \overrightarrow{\mathrm{BQ}}$となる$k$,$\ell$の値を求めよ.
(3)線分の長さの比$\displaystyle \frac{\mathrm{CZ}}{\mathrm{CR}}$の値を求めよ.
(4)$\triangle \mathrm{ABC}$の面積を$S$,$\triangle \mathrm{XYZ}$の面積を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。