タグ「交点」の検索結果

92ページ目:全1364問中911問~920問を表示)
山口大学 国立 山口大学 2012年 第4問
$xy$平面において,直線$y=8$の上に点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$が,直線$y=0$の上に点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{Q}_3$,$\mathrm{Q}_4$,$\mathrm{Q}_5$が,それぞれ$x$座標の小さい順に並んでいる.これらを$y=8$上の点と$y=0$上の点ひとつずつからなる5つの組に分け,それぞれの組の2点を結んでできる5本の線分を考える.下図はその一例である.このとき,次の問いに答えなさい.
(図は省略)

(1)3本の線分$\mathrm{P}_i \mathrm{Q}_n$,$\mathrm{P}_j \mathrm{Q}_m$,$\mathrm{P}_k \mathrm{Q}_l$が1点$\mathrm{R}$で交わるとき,$\displaystyle \frac{\mathrm{P}_i \mathrm{P}_j \cdot \mathrm{Q}_l \mathrm{Q}_m}{\mathrm{P}_j \mathrm{P}_k \cdot \mathrm{Q}_m \mathrm{Q}_n}$を求めなさい.ただし,$i<j<k$かつ$l<m<n$であるとする.
(2)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,どのような結び方をしても3本の線分が1点で交わらないことを(1)を用いて背理法で示しなさい.
(3)$\mathrm{P}_i,\ \mathrm{Q}_i \ (1 \leqq i \leqq 5)$の$x$座標を$2^i$とするとき,交点の数の合計がちょうど2つになるような結び方は何通りあるかを答えなさい.
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
山口大学 国立 山口大学 2012年 第3問
$a<b$とする.放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における接線を$\ell_1$とし,点$\mathrm{B}(b,\ b^2)$における接線を$\ell_2$とする.$\ell_1$と$\ell_2$の交点を$\mathrm{P}$とするとき,次の問いに答えなさい.

(1)$\mathrm{P}$の座標を$a,\ b$を用いて表しなさい.
(2)$\mathrm{P}$の$x$座標を$p$とし,点$\mathrm{D}(p,\ p^2)$における放物線$C$の接線を$\ell_3$とする.$\ell_1$と$\ell_3$の交点を$\mathrm{Q}$,$\ell_2$と$\ell_3$の交点を$\mathrm{R}$とするとき,$\displaystyle \frac{\mathrm{AB}}{\mathrm{QR}}$を求めなさい.
(3)放物線$C$と線分$\mathrm{AB}$で囲まれた図形の面積を$S_1$,三角形$\mathrm{PQR}$の面積を$S_2$とする.$\displaystyle \frac{S_2}{S_1}$を求めなさい.
防衛大学校 国立 防衛大学校 2012年 第4問
$\angle \mathrm{ACB}$が直角の$\triangle \mathrm{ABC}$において,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.また,$\mathrm{AB}=20$,$\mathrm{BD}=15$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{\mathrm{CD}}{\mathrm{AC}}$の値を求めよ.
(2)線分$\mathrm{AD}$の長さを求めよ.
(3)$\triangle \mathrm{ABD}$の内接円の半径$r$と,外接円の半径$R$を求めよ.
山梨大学 国立 山梨大学 2012年 第2問
$a$を定数,$h$を正の定数とし,放物線$C:y=x^2$と直線$x=a$との交点を$\mathrm{P}$,放物線$C$と直線$x=a+h$との交点を$\mathrm{Q}$とする.また,直線$\mathrm{PQ}$に平行で放物線$C$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と直線$x=a$との交点を$\mathrm{R}$,直線$\ell$と直線$x=a+h$との交点を$\mathrm{S}$とする.直線$\mathrm{PQ}$と放物線$C$に囲まれた図形の面積を$A_1$,四角形$\mathrm{PRSQ}$の面積を$A_2$としたとき,$\displaystyle \frac{A_1}{A_2}$の値は$a$と$h$に無関係に一定となることを示せ.
愛媛大学 国立 愛媛大学 2012年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+2x-3$と直線$y=2x+4$の交点の座標を求めよ.
(2)次の連立不等式で表される領域を$D$とする.領域$D$を図示し,その面積を求めよ.
\[ \left\{ \begin{array}{l}
y \geqq x^2+2x-3 \\
y \leqq 2x+4 \\
y \leqq 0
\end{array} \right. \]
(3)点$(x,\ y)$が(2)の領域$D$を動くとき,$x+2y$のとりうる値の範囲を求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
実数$a$は$a>e$を満たすとし,曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$とする.

(1)$\ell$と$y$軸との交点を$\mathrm{B}$とし,$\ell$と$x$軸との交点を$\mathrm{C}$とする.$\mathrm{B}$と$\mathrm{C}$の座標を求めよ.
(2)$\ell$と$x$軸,$y$軸で囲まれた部分の面積を$S_1(a)$とし,曲線$y=\log x$と$x$軸および直線$x=a$で囲まれた部分の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を求めよ.
(3)$T(a)=S_2(a)-S_1(a)$とおく.$e^2 \leqq a \leqq e^3$における$T(a)$の最大値と最小値を求めよ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。