タグ「交点」の検索結果

91ページ目:全1364問中901問~910問を表示)
福井大学 国立 福井大学 2012年 第3問
$t$を$0 \leqq t \leqq \sqrt{3}$をみたす実数とし,座標空間内に点$\mathrm{P}(t,\ 0,\ \sqrt{3-t^2})$をとる.$\mathrm{P}$を通り$yz$平面に平行な平面を$\beta$とおく.3点$\mathrm{D}(0,\ 1,\ 0)$,$\mathrm{E}(0,\ -1,\ 0)$,$\mathrm{F}(-\sqrt{3},\ 0,\ 0)$に対し,$\beta$と直線$\mathrm{FD}$との交点を$\mathrm{Q}$,$\beta$と直線$\mathrm{FE}$との交点を$\mathrm{R}$とする.$\triangle \mathrm{PQR}$の面積を$S(t)$とおくとき,以下の問いに答えよ.ただし,$S(\sqrt{3})=0$とする.

(1)$S(t)$を$t$を用いて表せ.
(2)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$S(t)$の最大値を求めよ.
(3)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$\triangle \mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2012年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第1問
$k$は正の実数とする.$xy$平面において,$x$軸および2つの曲線
\[ C_1:y=k \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=\frac{1}{k}\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
で囲まれた図形の面積を$S(k)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\cos \alpha$および$\sin \alpha$を$k$を用いて表せ.
(2)$S(k)$を$k$を用いて表せ.
(3)$k$が$k>0$の範囲を動くときの$S(k)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第2問
$0<a \leqq 1$とする.このとき,次の問に答えよ.

(1)曲線$y=-x^2+1$と曲線$y=-(x-a)^2+1$の交点の座標を求めよ.
(2)$x$軸,$y$軸および曲線$y=-x^2+1 \ (x \geqq 0)$で囲まれた図形を$A$とし,$x$軸,直線$x=a$および曲線$y=-(x-a)^2+1 \ (x \leqq a)$で囲まれた図形を$B$とする.このとき,$A$と$B$の共通部分の面積$S(a)$を求めよ.
(3)$S(a)=S(1)$を満たす$a$の値を求めよ.ただし$0<a<1$とする.
(4)$S(a)$の最大値を求めよ.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
福井大学 国立 福井大学 2012年 第3問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における$C$の法線$m$と直線$\ell_1:x=a$に関して,以下の問いに答えよ.

(1)$\ell_1$と$m$のなす角を$\theta$とするとき,$\tan \theta$を$a$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(2)$m$に関して$\ell_1$と対称な直線を$\ell_2$とするとき,$\ell_2$の方程式を$a$を用いて表せ.
(3)$\ell_2$と$y$軸の交点を$\mathrm{P}$とおく.$a$が実数全体を動くとき,$\mathrm{P}$の$y$座標の最大値とそのときの$a$の値を求めよ.
(4)$a$を(3)で求めた値とするとき,曲線$C$,$y$軸および線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
宮城教育大学 国立 宮城教育大学 2012年 第4問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 1)$,$\mathrm{B}(-1,\ 1,\ 2)$を含む平面を$\alpha$とする.また$t$を実数として,$\mathrm{P}(1,\ 0,\ -t)$とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta \ (0^\circ \leqq \theta \leqq 180^\circ)$を求めよ.
(2)点$\mathrm{P}$が平面$\alpha$上にあるとき,$t$の値を求めよ.
(3)点$\mathrm{P}$が平面$\alpha$上にないとき,点$\mathrm{P}$を通り平面$\alpha$に垂直な直線と平面$\alpha$との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.
長崎大学 国立 長崎大学 2012年 第7問
原点$\mathrm{O}$を中心とし,半径1の円を$C$とする.次の問いに答えよ.

(1)直線$y=2$上の点$\mathrm{P}(t,\ 2)$から円$C$に2本の接線を引き,その接点を$\mathrm{M},\ \mathrm{N}$とする.直線$\mathrm{OP}$と弦$\mathrm{MN}$の交点を$\mathrm{Q}$とする.点$\mathrm{Q}$の座標を$t$を用いて表せ.ただし,$t$は実数とする.
(2)点$\mathrm{P}$が直線$y=2$上を動くとき,点$\mathrm{Q}$の軌跡を求めよ.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
山口大学 国立 山口大学 2012年 第2問
平面上に異なる2点$\mathrm{A},\ \mathrm{B}$がある.$\mathrm{A}$を通る直線$\ell_1,\ \ell_2,\ \ell_3$ \\
と$\mathrm{B}$を通る直線$m_1,\ m_2,\ m_3$が図のように交わっており, \\
直線$\ell_1$と$m_1$の交点を$\mathrm{P}$,$\ell_2$と$m_2$の交点を$\mathrm{Q}$,$\ell_3$と$m_3$の \\
交点を$\mathrm{R}$とする.ただし,$\ell_1$と$\ell_3$,$\ell_2$と$\ell_3$,$m_1$と$m_2$,$m_2$ \\
と$m_3$のなす角はすべて$\displaystyle \frac{\pi}{3}$であり,$\displaystyle 0<\angle \mathrm{PAB}<\frac{\pi}{3}$, \\
$\displaystyle 0<\angle \mathrm{PBA}<\frac{\pi}{3}$である.$\alpha=\angle \mathrm{PAB}$,$\beta=\angle \mathrm{PBA}$として,次の問いに答えなさい.
\img{650_2779_2012_1}{45}


(1)$\angle \mathrm{APB}+\angle \mathrm{AQB}$を求めなさい.
(2)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$が同一円周上にあることを示しなさい.
(3)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$を通る円の半径が1であるとき,五角形$\mathrm{AQRBP}$の面積を$\sin \alpha$,$\sin \beta$,$\sin 2 \alpha$,$\sin 2 \beta$を用いて表しなさい.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。