タグ「交点」の検索結果

90ページ目:全1364問中891問~900問を表示)
室蘭工業大学 国立 室蘭工業大学 2012年 第1問
$a,\ b,\ c$を定数とし,$a>0$とする.関数$f(x),\ g(x)$を
\[ f(x)=x^2,\quad g(x)=-ax^2+bx+c \]
と定める.

(1)$2$つの放物線$y=f(x)$と$y=g(x)$が$2$つの交点を持つための必要十分条件を求めよ.
(2)$2$つの放物線$y=f(x)$と$y=g(x)$が$2$つの交点$(-1,\ 1)$,$(2,\ 4)$を持つとする.このとき,$b$と$c$を$a$を用いて表せ.
(3)$(2)$の条件のもとで,$2$つの放物線$y=f(x)$と$y=g(x)$で囲まれた図形の面積が$9$であるとき,$a,\ b,\ c$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第6問
関数$y=e^{-x}$のグラフを$C$とする.$C$上の点P$(t,\ e^{-t})$における接線と$x$軸との交点をQ$(u,\ 0)$とする.$C$上の点$(u,\ e^{-u})$をRとするとき,次の問いに答えよ.

(1)$u$を$t$の式で表せ.
(2)線分PQ,線分QRと$C$で囲まれた部分を図形Aとする.図形Aを$x$軸のまわりに1回転してできる立体の体積$V$を$t$の式で表せ.
(3)(1)の$u$を$t$の関数とみて$u(t)$と表す.数列$\{t_n\}$を$t_1=0,\ t_{n+1}=u(t_n) \ (n=1,\ 2,\ \cdots)$と定義するとき,一般項$t_n$を求めよ.
(4)(2)の$V$を$t$の関数とみて$V(t)$と表し,(3)の$t_n$を用いて$V_n=V(t_n) \ (n=1,\ 2,\ \cdots)$とおく.数列$\{V_n\}$は等比数列であることを示し,無限等比級数
\[ V_1+V_2+\cdots +V_n+\cdots \]
の収束,発散を調べ,収束する場合は,その和を求めよ.
室蘭工業大学 国立 室蘭工業大学 2012年 第4問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一直線上にないものとし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AC}}|=1$とする.また,$t$を正の実数とし,平面上の点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と定め,線分$\mathrm{AP}$と$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{AQ}}$を$t$および$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{ABP}$の面積を$t$と内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{CP}}$かつ点$\mathrm{Q}$が線分$\mathrm{BC}$を$1:2$に内分するとき,三角形$\mathrm{BPQ}$の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2012年 第3問
座標空間内において,2点O$(0,\ 0,\ 0)$,A$(1,\ 0,\ 1)$を端点とする線分OA,平面$z=2$上に点$(0,\ 0,\ 2)$を中心とする半径1の円周$C$,および$C$上の動点Pがあるとする.このとき,以下の問いに答えよ.

(1)直線PAと$xy$平面との交点をA$^\prime$とするとき,A$^\prime$の軌跡の方程式を求めよ.
(2)線分OA$^\prime$が動いてできる$xy$平面上の図形を描け.
(3)(2)の図形の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
旭川医科大学 国立 旭川医科大学 2012年 第4問
曲線$C:y=\log x$上に異なる$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}(b,\ \log b)$をとり,$C$の$\mathrm{A}$における接線と$\mathrm{B}$における接線の交点について考える.次の問いに答えよ.

(1)任意に与えられた$a>1$に対して,$2$本の接線の交点がちょうど直線$x=1$上にくるような$b$が唯一つだけ存在し,$b<1$であることを示せ.
(2)$2$点$\mathrm{A}(a,\ \log a)$,$\mathrm{B}\displaystyle \left( \frac{1}{a},\ \log \frac{1}{a} \right) \ (a>1)$について,$2$本の接線の交点の$x$座標が$1$より大きいか小さいかを調べよ.
(3)$k$を自然数とする.$\displaystyle a=1+\frac{1}{k}$として(2)の結果を使って,次の不等式が成り立つことを示せ.
\[ \sum_{k=1}^n \frac{1}{k} > \frac{1}{2} \left( 1+\frac{1}{n} \right) +\log n \quad (n \geqq 2) \]
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
長崎大学 国立 長崎大学 2012年 第3問
3点$\mathrm{P}(4,\ -5)$,$\mathrm{Q}(0,\ 3)$,$\mathrm{R}(7,\ 4)$を通る円を$C$とする.次の問いに答えよ.

(1)円$C$の方程式を$x^2+y^2+ax+by+c=0$とおいて,$a,\ b,\ c$の値を求めよ.
(2)点$\mathrm{S}(-4,\ 0)$を通り,傾き$m$の直線を$\ell$とする.直線$\ell$が円$C$と2つの交点をもつような傾き$m$の範囲を求めよ.
(3)傾き$m$が(2)の範囲にあるとき,直線$\ell$と円$C$の2つの交点の中点の軌跡はある円の一部分であることを示し,その軌跡を求めよ.
福井大学 国立 福井大学 2012年 第4問
曲線$C:y=e^{-x}$上の点$\mathrm{A}(a,\ e^{-a})$における法線を$\ell$とし,$\ell$に関して点$(a,\ 0)$と対称な点を$\mathrm{B}$,直線$\mathrm{AB}$と$y$軸との交点を$\mathrm{P}$とする.点$\mathrm{P}$の$y$座標を$f(a)$とおくとき,以下の問いに答えよ.

(1)$f(a)$を$a$を用いて表せ.
(2)$a$が実数全体を動くとき,$f(a)$の最大値とそのときの$a$の値を求めよ.
(3)$a$を(2)で求めた値とするとき,曲線$C$,$y$軸と線分$\mathrm{AP}$で囲まれた部分を,$y$軸の周りに1回転させてできる立体の体積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。