タグ「交点」の検索結果

88ページ目:全1364問中871問~880問を表示)
香川大学 国立 香川大学 2012年 第3問
放物線$C:y=x(x-a)$について,次の問に答えよ.ただし,$a>0$とする.

(1)直線$\ell:y=ax$と,$C$との交点で,原点とは異なる点の座標を求めよ.
(2)$C$と$x$軸とで囲まれた図形の面積を求めよ.
(3)$C$と$\ell$とで囲まれた図形$D$の面積を求めよ.
(4)点$(a,\ 0)$を通り,図形$D$の面積を2等分する直線の方程式を求めよ.
秋田大学 国立 秋田大学 2012年 第3問
$k$を実数とする.$xy$平面上の放物線$C:y=x^2+2x-2$と直線$\ell:y=kx$が異なる2点で交わるとし,交点の$x$座標をそれぞれ$\alpha,\ \beta$とする.ただし,$\alpha<\beta$である.$C$と$\ell$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$(\beta-\alpha)^2$を$k$の式で表せ.
(2)$\displaystyle \int_\alpha^\beta (x-\alpha)(x-\beta) \, dx=-\frac{1}{6}(\beta-\alpha)^3$であることを示せ.
(3)$S^2$の最小値とそのときの$k$の値を求めよ.
宮崎大学 国立 宮崎大学 2012年 第3問
座標平面上の放物線$y=x^2$と直線$y=kx+1 \ (k \text{は実数})$の2つの交点をP,Qとし,点Pの$x$座標を$\alpha$,点Qの$x$座標を$\beta \ (\alpha<\beta)$とする.このとき,次の各問に答えよ.

(1)$\alpha+\beta$および$\alpha\beta$の値を,$k$を用いて表せ.
(2)2点P,Qにおける放物線の接線をそれぞれ$\ell,\ m$とし,その交点をRとするとき,点Rの$x$座標を,$k$を用いて表せ.
(3)放物線と(2)の2つの接線$\ell,\ m$で囲まれる部分の面積を,$k$を用いて表せ.
香川大学 国立 香川大学 2012年 第1問
$\triangle$OABの辺OAを$1:2$に内分する点をC,辺OBを$3:2$に内分する点をDとする.$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{5}{3}\overrightarrow{\mathrm{AD}}$をみたす点をEとし,直線OEと直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\text{FC}:\text{CB}$を求めよ.
香川大学 国立 香川大学 2012年 第3問
放物線$C:y=x(x-a)$について,次の問に答えよ.ただし,$a>0$とする.

(1)直線$\ell:y=ax$と,$C$との交点で,原点とは異なる点の座標を求めよ.
(2)$C$と$x$軸とで囲まれた図形の面積を求めよ.
(3)$C$と$\ell$とで囲まれた図形$D$の面積を求めよ.
(4)点$(a,\ 0)$を通り,図形$D$の面積を2等分する直線の方程式を求めよ.
香川大学 国立 香川大学 2012年 第1問
$\triangle$OABの辺OAを$1:2$に内分する点をC,辺OBを$3:2$に内分する点をDとする.$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{5}{3}\overrightarrow{\mathrm{AD}}$をみたす点をEとし,直線OEと直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\text{FC}:\text{CB}$を求めよ.
宮崎大学 国立 宮崎大学 2012年 第4問
座標平面上に,2つの放物線
\[ C_1:y=(x-t)^2+t,\quad C_2:y=-x^2+4 \]
がある.ただし,$t$は実数とする.このとき,次の各問に答えよ.

(1)$C_1,\ C_2$が異なる2点で交わるとき,$t$の値の範囲を求めよ.
(2)(1)のとき,$C_1$と$C_2$の2つの交点を結ぶ線分の中点の軌跡を図示せよ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第3問
平面上に互いに異なる3点O,A,Bがあり,それらは同一直線上にはないものとする.$\text{OA}=2,\ \text{OB}=3$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,その内積を$\overrightarrow{a} \cdot \overrightarrow{b}=t$とおく.$\angle \text{AOB}$の二等分線と線分ABとの交点をCとし,直線OAに関して点Bと対称な点をDとする.このとき,次の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OD}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OC}} \perp \overrightarrow{\mathrm{OD}}$となるとき,$\angle \text{AOB}$とOCを求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。