タグ「交点」の検索結果

85ページ目:全1364問中841問~850問を表示)
静岡大学 国立 静岡大学 2012年 第2問
四面体ABCDがある.$\triangle$ABC,$\triangle$ABDの重心をそれぞれE,Fとおき,線分DEと線分CFの交点をGとする.このとき,次の問いに答えよ.

(1)線分DEと線分CFが交わる理由を述べよ.
(2)Oを空間内の定点とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}},\ \overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とおく.このとき,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$を用いて表せ.
(3)A$(0,\ 0,\ 4)$,B$(-1,\ 3,\ 0)$,C$(3,\ 0,\ 0)$,D$(-2,\ -3,\ 0)$のとき,$\angle \text{AGB},\ \angle \text{BGC},\ \angle \text{CGA}$の大小関係を不等号を用いて表せ.
静岡大学 国立 静岡大学 2012年 第1問
放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2) (a<0<b)$における接線の交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{C}$の座標を$a,\ b$を用いて表せ.
(2)$\triangle \mathrm{ABC}$が正三角形のとき,$a,\ b$の値を求めよ.
(3)$\triangle \mathrm{ABC}$が直角二等辺三角形となるような$a,\ b$の組をすべて求めよ.
広島大学 国立 広島大学 2012年 第2問
放物線$\displaystyle C:y=\frac{1}{2}x^2-\frac{1}{2}$上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\mathrm{A}$の$x$座標は$3$である.点$\mathrm{A}$,点$\mathrm{B}$における$C$の接線をそれぞれ$\ell,\ m$とし,$\ell$と$m$の交点を$\mathrm{P}$とおくと,$\angle \mathrm{APB} = 45^\circ$であった.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$m$の傾きを求めよ.
(3)点$\mathrm{P}$の座標を求めよ.
(4)$C,\ \ell,\ m$で囲まれた図形において,不等式$x \geqq 0$を満たす部分の面積$S$を求めよ.
静岡大学 国立 静岡大学 2012年 第4問
$a_1$を$\displaystyle \frac{\pi}{12} < a_1 < \frac{\pi}{4}$を満たす数とし,$\{a_n\}$を
\[ a_{n+1} = 1-\sin \;a_n \ (n=1,\ 2,\ 3,\ \cdots) \]
で定められる数列とする.このとき,次の問いに答えよ.

(1)直線$y=1-x$と曲線$y=\sin x$は,$\displaystyle \frac{\pi}{12} < x < \frac{\pi}{4}$の範囲でただ1つの交点をもつことを示せ.
(2)$n$を自然数とするとき,不等式$\displaystyle \frac{\pi}{12} < a_n < \frac{\pi}{4}$を示せ.
(3)(1)の交点の$x$座標を$\alpha$とするとき,$\displaystyle \lim_{n \to \infty}a_n=\alpha$が成り立つことを示せ.
金沢大学 国立 金沢大学 2012年 第2問
曲線$C : y = |x^2-2x|$と傾きが$m$の直線$\ell: y = mx$ついて,次の問いに答えよ.

(1)曲線$y=-x^2 +2x$と$\ell$が接する$m$の値を求めよ.
(2)$C$と$\ell$が原点以外の相異なる2点で交わるような$m$の範囲を求めよ.また,そのときの2つの交点の座標を$m$を用いて表せ.
(3)$m$は(2)で求めた範囲にあるとする.$x \geqq 2,\ y \leqq mx,\ y \geqq |x^2-2x|$で定まる部分の面積$S$を$m$を用いて表せ.
筑波大学 国立 筑波大学 2012年 第2問
曲線$\displaystyle C:y=\frac{1}{x+2} \ (x>-2)$を考える.曲線$C$上の点P$_1 \displaystyle (0,\ \frac{1}{2})$における接線を$\ell_1$とし,$\ell_1$と$x$軸との交点をQ$_1$,点Q$_1$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_2$とおく.以下同様に,自然数$n \ (n \geqq 2)$に対して,点P$_n$における接線を$\ell_n$とし,$\ell_n$と$x$軸との交点をQ$_n$,点Q$_n$を通り$x$軸と垂直な直線と曲線$C$との交点をP$_{n+1}$とおく.

(1)$\ell_1$の方程式を求めよ.
(2)P$_n$の$x$座標を$x_n \ (n \geqq 1)$とする.$x_{n+1}$を$x_n$を用いて表し,$x_n$を$n$を用いて表せ.
(3)$\ell_n$,$x$軸,$y$軸で囲まれる三角形の面積$S_n$を求め,$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
筑波大学 国立 筑波大学 2012年 第4問
四面体$\mathrm{OABC}$において,次が満たされているとする.
\[ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}} \]
点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とする.点$\mathrm{O}$を通り平面$\alpha$と直交する直線と,平面$\alpha$との交点を$\mathrm{H}$とする.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{BC}}$は垂直であることを示せ.
(2)点$\mathrm{H}$は$\triangle \mathrm{ABC}$の垂心であること,すなわち$\overrightarrow{\mathrm{AH}} \perp \overrightarrow{\mathrm{BC}},\ \overrightarrow{\mathrm{BH}} \perp \overrightarrow{\mathrm{CA}},\ \overrightarrow{\mathrm{CH}} \perp \overrightarrow{\mathrm{AB}}$を示せ.
(3)$|\overrightarrow{\mathrm{OA}}|=|\overrightarrow{\mathrm{OB}}|=|\overrightarrow{\mathrm{OC}}|=2,\ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OC}} \cdot \overrightarrow{\mathrm{OA}}=1$とする.このとき,$\triangle \mathrm{ABC}$の各辺の長さおよび線分$\mathrm{OH}$の長さを求めよ.
千葉大学 国立 千葉大学 2012年 第7問
横$2a$,縦$2b$の長方形を長方形の中心のまわりに角$\theta$だけ回転させる.回転後の長方形ともとの長方形とが重なり合う部分の面積$S(\theta)$を求めよ.ただし,長方形の中心とはその2つの対角線の交点とし,長方形はそれを含む平面内で回転するものとする.また,回転角$\theta$は0以上,長方形のいずれかの頂点が隣の頂点に達するまでの角度以下に取るものとする.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
滋賀大学 国立 滋賀大学 2012年 第1問
長さ1の線分ABを直径とする円周上の点をPとするとき,次の問いに答えよ.ただし,PはA,Bとは異なるものとする.

(1)$\angle \text{PAB}=\theta$とするとき,線分AP,BPの長さを$\theta$を用いて表せ.
(2)PからABに下ろした垂線とABとの交点をCとする.$\triangle$APCと$\triangle$BPCの周の長さの和$L$を$\theta$を用いて表せ.
(3)$L$の最大値を求め,そのときの$\theta$の値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。