タグ「交点」の検索結果

74ページ目:全1364問中731問~740問を表示)
北海学園大学 私立 北海学園大学 2013年 第4問
直線$\ell:y=2x+m$は,点$\mathrm{A}(4,\ 2)$を中心とする円$C$に点$\mathrm{P}$で接し,$y$軸と点$\mathrm{Q}$で交わっている.直線$\mathrm{AP}$と円$C$との交点のうち,$\mathrm{P}$とは異なる点を$\mathrm{R}$とする.ただし,$-4<m<4$とする.

(1)円$C$の半径$r$を$m$を用いて表せ.
(2)点$\mathrm{P}$の座標を$m$を用いて表せ.
(3)三角形$\mathrm{PQR}$の面積の最大値を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
直線$\ell:y=2x+m$は,点$\mathrm{A}(4,\ 2)$を中心とする円$C$に点$\mathrm{P}$で接し,$y$軸と点$\mathrm{Q}$で交わっている.直線$\mathrm{AP}$と円$C$との交点のうち,$\mathrm{P}$とは異なる点を$\mathrm{R}$とする.ただし,$-4<m<4$とする.

(1)円$C$の半径$r$を$m$を用いて表せ.
(2)点$\mathrm{P}$の座標を$m$を用いて表せ.
(3)三角形$\mathrm{PQR}$の面積の最大値を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
三角形$\mathrm{ABC}$は,$\mathrm{AB}=7k$,$\mathrm{BC}=6k$,$\mathrm{CA}=5k$であり,面積が$24 \sqrt{6}$である.ただし,$k$は正の定数とする.

(1)$k$の値を求めよ.
(2)$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AD}$の長さを求めよ.
(3)三角形$\mathrm{ADC}$に内接する円の半径$r$を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
関数$\displaystyle f(x)=\sin x+\cos x (-\frac{\pi}{2} \leqq x \leqq \pi)$について,曲線$C:y=f(x)$と$y$軸との交点を$\mathrm{A}$とする.

(1)曲線$C$と$x$軸との交点の座標をすべて求めよ.
(2)導関数$f^\prime(x)$を求めよ.また,曲線$C$上の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(3)曲線$C$と接線$\ell$,および直線$\displaystyle x=-\frac{\pi}{4}$で囲まれた図形の面積を求めよ.
北海学園大学 私立 北海学園大学 2013年 第3問
正三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上にそれぞれ点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があり,$\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=t$,$\mathrm{BD}=\mathrm{CE}=\mathrm{AF}=1-t$が成り立っている.さらに直線$\mathrm{AE}$と$\mathrm{CD}$の交点を$\mathrm{P}$,直線$\mathrm{BF}$と$\mathrm{AE}$の交点を$\mathrm{Q}$,直線$\mathrm{CD}$と$\mathrm{BF}$の交点を$\mathrm{R}$とする.ただし,$0<t<1$とする.

(1)線分$\mathrm{FR}$の長さを$t$を用いて表せ.
(2)三角形$\mathrm{ABC}$の面積は三角形$\mathrm{CFR}$の面積の何倍かを$t$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積が三角形$\mathrm{PQR}$の面積の$2$倍となるとき,$t$の値をすべて求めよ.
東北学院大学 私立 東北学院大学 2013年 第1問
円$\mathrm{O}$に内接する四角形$\mathrm{ABCD}$において,対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とする.
\[ \mathrm{AB}=\mathrm{BC}=2 \sqrt{7},\quad \mathrm{BE}=4,\quad \mathrm{DE}=3,\quad \angle \mathrm{DEC}=60^\circ \]
であるとき,次の問いに答えよ.

(1)線分$\mathrm{AE}$,$\mathrm{EC}$の長さを求めよ.
(2)辺$\mathrm{CD}$,$\mathrm{DA}$の長さを求めよ.
(3)円$\mathrm{O}$の半径$R$を求めよ.
南山大学 私立 南山大学 2013年 第2問
原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$がある.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$\mathrm{O}$から$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とするとき,
\[ \overrightarrow{\mathrm{AH}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
を満たすような実数$s,\ t$の値を求めよ.また,$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に内接する球の半径$r$を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$x$の整式$x^3+3mx^2+2(m^2-1)x-4$が$(x+2)^2$で割り切れるとする.このとき,$m$の値は$m=[ア]$であり,商は$[イ]$である.

(2)行列$A=\left( \begin{array}{cc}
x+1 & 2 \\
-5 & y-2
\end{array} \right)$がある.$A^2=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たすとき,$x$と$y$の値を求めると$(x,\ y)=[ウ]$である.また,$A$が逆行列をもたないような$2$つの正の整数$x$と$y$の値を求めると$(x,\ y)=[エ]$である.
(3)$a$は$1$ではない実数,$k$は$3$以上の整数とする.初項が$a$,第$2$項が$1$の等差数列があり,その第$k$項を$b$とする.$b$を$a$と$k$で表すと$b=[オ]$である.この$b$に対して,初項が$1$,第$2$項が$a$,第$3$項が$b$の数列が等比数列になるとき,$a$を$k$で表すと$a=[カ]$である.
(4)曲線$C:y=\log x$上の点$\mathrm{P}(2,\ \log 2)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{Q}$とする.$\mathrm{P}$における$C$の接線を$\ell$,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$とし,$m$と$x$軸との交点を$\mathrm{R}$とする.このとき,$m$の方程式を求めると$y=[キ]$である.また,$\triangle \mathrm{PQR}$の面積$S$を求めると$S=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の最大値が$6$となる確率は$[ケ]$であり,出た目の最大値と最小値の組が$(6,\ 1)$となる確率は$[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)実数$a$に対して,$2$つの関数
\[ f(x)=x^2+4ax+8,\quad g(x)=-x^2+(2a-2)x-10 \]
を考える.このとき,$g(x) \geqq f(x)$となる$x$が存在するような$a$の値の範囲は$[ア]$である.また,$f(x)$の最小値が$g(x)$の最大値より大きくなるような$a$の値の範囲は$[イ]$である.
(2)$0 \leqq \theta<2\pi$のとき,$x=\sin \theta+\cos \theta$のとりうる値の範囲は$[ウ]$であり,$y=\sin 2\theta+2(\sin \theta+\cos \theta)$のとりうる値の範囲は$[エ]$である.
(3)以下の$4$つの数のうち,$1$番大きな数は$[オ]$であり,$1$番小さな数は$[カ]$である.
\[ 7^{777},\quad 10^{7 \log_{10}7},\quad 7^{(7^7)},\quad 7777777 \]
(4)$r$を正の実数とする.円$x^2+(y-1)^2=r^2$と曲線$y=x^2$が$x>0$の範囲に異なる$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもつような$r$の値の範囲は$[キ]$である.さらに,この$r$の範囲で$\displaystyle \mathrm{PQ}=\frac{\sqrt{5}}{2}$が成り立つ$r$の値は$r=[ク]$である.
甲南大学 私立 甲南大学 2013年 第2問
座標平面上に,$2$つの円$C_1:x^2+y^2=1$,$C_2:(x-2)^2+(y-1)^2=4$があり,$C_1$と$C_2$の共通接線を$n_1,\ n_2$(ただし$n_1$の傾きより$n_2$の傾きの方が大きい)とする.また,$C_1$と$C_2$の中心を結ぶ直線を$\ell$とし,$C_1$と$C_2$の$2$つの交点を結ぶ直線を$m$とする.このとき,以下の問いに答えよ.

(1)直線$\ell$の方程式,および$\ell$と$n_1$の交点の座標を求めよ.
(2)直線$n_1$と直線$\ell$とのなす角を$\displaystyle \alpha \left( \text{ただし} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$とし,$\tan \alpha$および$\tan 2\alpha$の値を求めよ.
(3)直線$n_2$の方程式を求めよ.
(4)直線$m$の方程式を求めよ.
(5)$3$つの直線$n_1,\ n_2,\ m$で囲まれた三角形の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。