タグ「交点」の検索結果

72ページ目:全1364問中711問~720問を表示)
京都教育大学 国立 京都教育大学 2013年 第3問
円$x^2+y^2=1$を$C$とし,点$(0,\ 2)$を通り傾き$a$の直線を$L$とする.次の問に答えよ.

(1)$L$と$C$が異なる$2$つの交点を持つような$a$の条件を求めよ.
(2)$L$と$C$が異なる$2$つの交点を持つとき,それら$2$交点の中点の軌跡を含む円の方程式を求めよ.
島根大学 国立 島根大学 2013年 第2問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2013年 第4問
空間における$3$点$\mathrm{A}(1,\ 1,\ -1)$,$\mathrm{B}(3,\ 2,\ 1)$,$\mathrm{C}(-1,\ 3,\ 0)$を通る平面を$\alpha$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$は直角二等辺三角形であることを示せ.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,その交点を$\mathrm{H}$とするとき,点$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に外接する球の中心の座標を求めよ.
大分大学 国立 大分大学 2013年 第3問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$|\overrightarrow{a}|=\sqrt{3}$,$|\overrightarrow{b}|=\sqrt{2}$,$\overrightarrow{a} \cdot \overrightarrow{b}=t$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線$\mathrm{AP}$を下ろし,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線$\mathrm{BQ}$を下ろし,直線$\mathrm{AP}$と直線$\mathrm{BQ}$の交点を$\mathrm{R}$とする.

(1)$t$の範囲を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$t$と$\overrightarrow{b}$で,$\overrightarrow{\mathrm{OQ}}$を$t$と$\overrightarrow{a}$で表しなさい.
(3)$t=1$のとき,$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表し,$|\overrightarrow{\mathrm{OR}}|$を求めなさい.
大分大学 国立 大分大学 2013年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$|\overrightarrow{a}|=\sqrt{3}$,$|\overrightarrow{b}|=\sqrt{2}$,$\overrightarrow{a} \cdot \overrightarrow{b}=t$とする.点$\mathrm{A}$から直線$\mathrm{OB}$に垂線$\mathrm{AP}$を下ろし,点$\mathrm{B}$から直線$\mathrm{OA}$に垂線$\mathrm{BQ}$を下ろし,直線$\mathrm{AP}$と直線$\mathrm{BQ}$の交点を$\mathrm{R}$とする.

(1)$t$の範囲を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$t$と$\overrightarrow{b}$で,$\overrightarrow{\mathrm{OQ}}$を$t$と$\overrightarrow{a}$で表しなさい.
(3)$t=1$のとき,$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表し,$|\overrightarrow{\mathrm{OR}}|$を求めなさい.
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
宮崎大学 国立 宮崎大学 2013年 第1問
平面上に,$1$辺の長さが$1$の正三角形$\mathrm{ABC}$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とおく.また,直線$\mathrm{AC}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{1}{2}\overrightarrow{a}$,$\overrightarrow{\mathrm{CQ}}=2 \overrightarrow{b}$であるようにとる.線分$\mathrm{PQ}$の中点を$\mathrm{R}$とし,直線$\mathrm{AB}$上に点$\mathrm{D}$を$\mathrm{DR} \perp \mathrm{PQ}$であるようにとる.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{DR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{DR}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とするとき,線分$\mathrm{CE}$の長さを求めよ.
宮崎大学 国立 宮崎大学 2013年 第2問
平面上に,$1$辺の長さが$1$の正三角形$\mathrm{ABC}$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$とおく.また,直線$\mathrm{AC}$,$\mathrm{BC}$上にそれぞれ点$\mathrm{P}$,$\mathrm{Q}$を$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{1}{2}\overrightarrow{a}$,$\overrightarrow{\mathrm{CQ}}=2 \overrightarrow{b}$であるようにとる.線分$\mathrm{PQ}$の中点を$\mathrm{R}$とし,直線$\mathrm{AB}$上に点$\mathrm{D}$を$\mathrm{DR} \perp \mathrm{PQ}$であるようにとる.このとき,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{DR}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)直線$\mathrm{DR}$と直線$\mathrm{BC}$の交点を$\mathrm{E}$とするとき,線分$\mathrm{CE}$の長さを求めよ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
香川大学 国立 香川大学 2013年 第1問
次の問に答えよ.

(1)座標平面上の原点$\mathrm{O}$を通り,$x$軸とのなす角が$30^\circ$で傾きが正の直線と,放物線$y=x^2$の交点で$\mathrm{O}$と異なるものを$\mathrm{A}$とおく.点$\mathrm{A}$の座標を求めよ.
(2)線分$\mathrm{OA}$を$1$辺とする正方形$\mathrm{OABC}$をつくる.ただし,点$\mathrm{C}$は第$2$象限にとる.点$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ求めよ.
(3)直線$\mathrm{OB}$に垂直で,放物線$y=x^2$に接する直線の方程式を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。