タグ「交点」の検索結果

64ページ目:全1364問中631問~640問を表示)
新潟大学 国立 新潟大学 2013年 第2問
一辺の長さが$1$の正方形$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,点$\mathrm{B}$,$\mathrm{C}$を除いた辺$\mathrm{BC}$上を動くとする.点$\mathrm{P}$を通り直線$\mathrm{AP}$と垂直な直線と辺$\mathrm{CD}$との交点を$\mathrm{Q}$とする.線分$\mathrm{BP}$の長さを$x$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{CPQ}$の面積$S$を,$x$を用いて表せ.
(2)面積$S$の最大値と,そのときの$x$の値を求めよ.
(3)線分$\mathrm{AQ}$の長さ$L$の最小値と,そのときの$x$の値を求めよ.
新潟大学 国立 新潟大学 2013年 第2問
一辺の長さが$1$の正方形$\mathrm{ABCD}$を考える.点$\mathrm{P}$は,点$\mathrm{B}$,$\mathrm{C}$を除いた辺$\mathrm{BC}$上を動くとする.点$\mathrm{P}$を通り直線$\mathrm{AP}$と垂直な直線と辺$\mathrm{CD}$との交点を$\mathrm{Q}$とする.線分$\mathrm{BP}$の長さを$x$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{CPQ}$の面積$S$を,$x$を用いて表せ.
(2)面積$S$の最大値と,そのときの$x$の値を求めよ.
(3)線分$\mathrm{AQ}$の長さ$L$の最小値と,そのときの$x$の値を求めよ.
信州大学 国立 信州大学 2013年 第2問
次の問いに答えよ.

(1)放物線$C:y=x^2+x-1$と直線$\ell:y=2x+1$の交点の座標を求めよ.
(2)(1)で求めた交点の$x$座標の大きい方を$x_0$とする.$a>x_0$とする.$C$と$\ell$で囲まれた領域の面積を$S_1$,$C$と$\ell$および直線$x=a$で囲まれた領域の面積を$S_2$,$C$と$\ell$および直線$x=-a$で囲まれた領域の面積を$S_3$とする.$S_1=S_2+S_3$となるときの$a$の値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$0<t<1$とする.$xy$平面上の曲線$\displaystyle C_1:y=t \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=2 \sin x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$t$を用いて表せ.
(2)2曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を$S(t)$とする.また,2曲線$C_1,\ C_2$と,$x$軸上の2点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$,$(\pi,\ 0)$を結ぶ線分で囲まれた図形の面積を$T(t)$とする.このとき,$S(t)$と$T(t)$を求めよ.
(3)極限値$\displaystyle \lim_{t \to +0}\frac{t^2T(t)}{S(t)}$を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
熊本大学 国立 熊本大学 2013年 第3問
直方体$\mathrm{OABC}$-$\mathrm{DEFG}$において,$\mathrm{OA}=\mathrm{OD}=1$,$\mathrm{OC}=2$とし,辺$\mathrm{EF}$の中点を$\mathrm{M}$とする.また,$\overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OD}} \ (0 \leqq t \leqq 1)$とし,点$\mathrm{P}$から線分$\mathrm{CM}$におろした垂線と線分$\mathrm{CM}$との交点を$\mathrm{H}$とする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とおくとき,以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{PC}},\ \overrightarrow{\mathrm{CM}},\ \overrightarrow{\mathrm{PM}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d},\ t$を用いて表せ.
(2)$\overrightarrow{\mathrm{PH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d},\ t$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|^2+|\overrightarrow{\mathrm{PH}}|^2$の最小値を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が$2$である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)$a$を正の数とする.円$x^2+y^2=a$と$C$の交点の個数が,$a$の値によってどのように変わるかを調べよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が2である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)円$\displaystyle x^2+y^2=\frac{9}{4}$と$C$の交点の$x$座標をすべて求めよ.さらに,交点の個数を求めよ.
千葉大学 国立 千葉大学 2013年 第5問
$a,\ b$を実数とし,$a>0$とする.放物線$\displaystyle y=\frac{x^2}{4}$上に$2$点$\displaystyle \mathrm{A} \left( a,\ \frac{a^2}{4} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{b^2}{4} \right)$をとる.点$\mathrm{A}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{A}$と$n_\mathrm{A}$,点$\mathrm{B}$における放物線の接線と法線をそれぞれ$\ell_\mathrm{B}$と$n_\mathrm{B}$とおいたとき,$\ell_\mathrm{A}$と$\ell_\mathrm{B}$が直交しているものとする.$2$つの接線$\ell_\mathrm{A},\ \ell_\mathrm{B}$の交点を$\mathrm{P}$とし,$2$つの法線$n_\mathrm{A},\ n_\mathrm{B}$の交点を$\mathrm{Q}$とする.

(1)$b$を$a$を用いて表せ.
(2)$\mathrm{P},\ \mathrm{Q}$の座標を$a$を用いて表せ.
(3)長方形$\mathrm{AQBP}$の面積が最小となるような$a$の値と,そのときの面積を求めよ.
東京大学 国立 東京大学 2013年 第2問
座標平面上の$3$点
\[ \mathrm{P}(0,\ -\sqrt{2}),\quad \mathrm{Q}(0,\ \sqrt{2}),\quad \mathrm{A}(a,\ \sqrt{a^2+1}) \quad (0 \leqq a \leqq 1) \]
を考える.

(1)$2$つの線分の長さの差$\mathrm{PA}-\mathrm{AQ}$は$a$によらない定数であることを示し,その値を求めよ.
(2)$\mathrm{Q}$を端点とし$\mathrm{A}$を通る半直線と放物線$\displaystyle y=\frac{\sqrt{2}}{8}x^2$との交点を$\mathrm{B}$とする.点$\mathrm{B}$から直線$y=2$へ下した垂線と直線$y=2$との交点を$\mathrm{C}$とする.このとき,線分の長さの和
\[ \mathrm{PA}+\mathrm{AB}+\mathrm{BC} \]
は$a$によらない定数であることを示し,その値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。