タグ「交点」の検索結果

60ページ目:全1364問中591問~600問を表示)
立教大学 私立 立教大学 2014年 第2問
平面上に三角形$\mathrm{OAB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.このとき,次の問に答えよ.

(1)線分$\mathrm{AB}$の中点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)線分$\mathrm{OA}$を$s:(1-s)$,線分$\mathrm{OB}$を$t:(1-t)$に内分した点をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{EA}}$を$s,\ t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.ただし,$0<s<1$,$0<t<1$とする.
(3)線分$\mathrm{DB}$と線分$\mathrm{EA}$の交点を$\mathrm{F}$とする.$\displaystyle s=\frac{1}{3},\ t=\frac{2}{3}$のとき,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)$(3)$で用いた$s,\ t$の値に対し,線分$\mathrm{OF}$の中点を$\mathrm{H}$,線分$\mathrm{DE}$を$k:(1-k)$に内分した点を$\mathrm{G}$とするとき,$\mathrm{H}$,$\mathrm{G}$,$\mathrm{C}$が一直線上にあるときの$k$の値を求めよ.
立教大学 私立 立教大学 2014年 第4問
$a$を正の実数とする.座標平面上に$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(a,\ a)$,$\mathrm{C}(0,\ a)$がある.四角形$\mathrm{OABC}$の辺$\mathrm{AB}$上に点$\mathrm{P}(a,\ p)$をとり,点$\mathrm{P}$を通り$\mathrm{AC}$と平行な直線と$\mathrm{BC}$との交点を$\mathrm{Q}$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OPQ}$の面積$S$を$a$と$p$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の外接円の半径$R$を$a$と$p$を用いて表せ.
(3)三角形$\mathrm{OAP}$と三角形$\mathrm{PBQ}$の面積がともに$1$であるとき,$a-p$と$a+p$の値を求めよ.
(4)$(3)$のとき,$a$と$p$の値を求めよ.
(5)$a$と$p$が$(4)$で求めた値であるとき,三角形$\mathrm{OPQ}$の内接円の半径$r$の値を求めよ.
北里大学 私立 北里大学 2014年 第1問
次の各文の$[ ]$にあてはまる数を求めよ.

(1)$\displaystyle 0<\alpha<\frac{\pi}{2},\ \frac{\pi}{2}<\beta<\pi,\ \cos \alpha=\frac{3}{5},\ \sin \beta=\frac{12}{13}$を満たす$2$つの角$\alpha,\ \beta$を考える.このとき,$\sin 2\alpha=[ア]$,$\tan (\alpha-\beta)=[イ]$,$\sin (2\alpha+\beta)=[ウ]$となる.
(2)整式$P(x)$を$x^2-3x+2$で割ると$12x-5$余り,$x^2-x-2$で割ると$2x+15$余る.このとき,$P(x)$を$x-1$で割った余りは$[エ]$で,$x^2-1$で割った余りは$[オ]x+[カ]$である.
(3)$1,\ 1,\ 2,\ 2,\ 3,\ 4,\ 5$の$7$個の数字すべてを横$1$列に並べるとき,並べ方は全部で$[キ]$通りである.そのうち,両端の数字が$3$と$4$となる並べ方は$[ク]$通り,$3$より左側に$1$が$2$個あるような並べ方は$[ケ]$通りである.
(4)$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{13}$,$\mathrm{CA}=4$である三角形$\mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\angle \mathrm{BAC}=\theta$とおく.このとき,$\theta$は$[コ]$度で,内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[サ]$である.また,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$,三角形$\mathrm{ABC}$の外心を$\mathrm{E}$とするとき,$\overrightarrow{\mathrm{AD}}=[シ] \overrightarrow{b}+[ス] \overrightarrow{c}$,$\overrightarrow{\mathrm{AE}}=[セ] \overrightarrow{b}+[ソ] \overrightarrow{c}$と表せる.
松山大学 私立 松山大学 2014年 第4問
次の空所$[ア]$~$[ト]$を埋めよ.

関数$\displaystyle f(x)=x^3+\frac{1}{2}ax^2-6x-\frac{1}{2}b$がある.ただし,
\[ a=\int_0^1 f(t) \, dt \cdots\cdots ① \qquad b=\int_{-1}^1 f(t) \, dt \cdots\cdots ② \]
とする.

(1)関数$f(x)$の不定積分は
\[ \int f(t) \, dt=\frac{1}{[ア]}t^4+\frac{1}{[イ]}at^3-[ウ]t^2-\frac{1}{[エ]}bt+C \quad \text{($C$は積分定数)} \]
であり,式$①$,$②$より$a=-[オ]$,$\displaystyle b=-\frac{[カ]}{[キ]}$である.
(2)$y=f(x)$が表す曲線$A$において,$\displaystyle x=\frac{3}{2}$のときの接線$B$を$y=g(x)$とおくと,関数$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]x-[コ] \]
であるので,
\[ g(x)=-\frac{[サシ]}{[ス]}x-\frac{[セソ]}{[タ]} \]
である.
接点以外の,曲線$A$と接線$B$の交点は,$\displaystyle \left( -\frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right)$である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第2問
三角形$\mathrm{OAB}$の各頂点の座標は$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 4)$,$\mathrm{B}(-4,\ 6)$である.

(1)頂点$\mathrm{A}$を通って三角形$\mathrm{OAB}$の面積を$2$等分する直線の方程式を求めよ.
(2)三角形$\mathrm{OAB}$の重心$\mathrm{G}$の座標を求めよ.
(3)重心$\mathrm{G}$から辺$\mathrm{AB}$に引いた垂線と辺$\mathrm{AB}$の交点を$\mathrm{H}$とするとき,$\mathrm{H}$の座標を求めよ.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第5問
$y=f(x)=x^3-4x$上の点$(a,\ a^3-4a)$で$f(x)$に接する直線がこの接点以外で交わるとする.その交点の座標を求めよ.また,その$y$座標が正となるための$a$の条件を求めよ.
東京都市大学 私立 東京都市大学 2014年 第4問
楕円$x^2+3y^2=2$を$C_1$とし,円$x^2+y^2=1$を$C_2$とする.このとき,次の問に答えよ.

(1)$C_1$を図示せよ.
(2)$C_1$と$C_2$との$4$つの交点の座標は,$(p,\ q)$,$(-p,\ q)$,$(-p,\ -q)$,$(p,\ -q)$と表される.$p,\ q$を求めよ.ただし,$p>0$,$q>0$とする.
(3)楕円$C_1$で囲まれた図形のうち,$0 \leqq x \leqq p$となる部分の面積を求めよ.ただし,$p$は$(2)$で求めたものとする.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$x+y=1$のとき$x^2+y^2$の最小値を求めなさい.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(5)円$x^2+y^2=2$と直線$y=x-1$の$2$つの交点を結ぶ線分の長さを求めなさい.
(6)$x^4-4$を複素数の範囲で因数分解しなさい.
西南学院大学 私立 西南学院大学 2014年 第4問
曲線$C_1:y=x^3-3x$と,$C_1$を$x$軸方向に$2$だけ平行移動して得られる曲線$C_2$との交点の$x$座標は,$\displaystyle \frac{[ホ] \pm \sqrt{[マ]}}{[ミ]}$である.

$\displaystyle \int_a^b (x-a)(x-b) \, dx=\frac{[ムメ]}{[モ]}(b-a)^3$を利用すると,$C_1$と$C_2$で囲まれる面積は,$\displaystyle \frac{[ヤユ] \sqrt{[ヨ]}}{[ラ]}$である.
千歳科学技術大学 私立 千歳科学技術大学 2014年 第1問
以下の各問いに答えなさい.

(1)次の$[ ]$に適語を入れなさい.
整数$a$と$0$でない整数$b$によって,分数$\displaystyle \frac{a}{b}$の形に表すことのできる数を$[ア]$といい,表すことができない数を$[イ]$という.
(2)$x$と$y$についての$1$次不等式$ax-2y>4$と$x+by<a$の解が一致しているとき,定数$a$と$b$の値をそれぞれ求めなさい.
(3)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=7$,$\angle \mathrm{A}={120}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めなさい.
(4)$x^4-4$を複素数の範囲で因数分解しなさい.
(5)$y=xe^{-x}$を微分しなさい.

(6)$\displaystyle \int_0^{\frac{\pi}{2}} x \sin x \, dx$を求めなさい.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。