タグ「交点」の検索結果

59ページ目:全1364問中581問~590問を表示)
名城大学 私立 名城大学 2014年 第1問
次の問について,答えを$[ ]$に記入せよ.

(1)$x=3+\sqrt{5}$,$y=3-\sqrt{5}$のとき,$4x^2+3xy+4y^2=[ア]$,$\displaystyle \frac{y}{x}+\frac{x}{y}=[イ]$である.
(2)関数$f(x)=-x^2+8x+c (2 \leqq x \leqq 5)$の最小値が$1$のとき,$c=[ウ]$である.また,そのときの$f(x)$の最大値は$[エ]$である.
(3)放物線$C_1:y=(x-p)^2+q$が放物線$C_2:y=-x^2$に接するとき,$p,\ q$の満たす条件は$[オ]$である.これより,$p$がすべての実数値をとって変わるとき,$C_1$の頂点が描く軌跡は放物線であり,その方程式は$[カ]$である.
(4)放物線$C:y=x^2+x$と直線$\ell_1:y=-x$との$2$つの交点のうち,原点ではない交点の$x$座標を$x_0$とすると,$x_0=[キ]$である.$C$と$\ell_1$によって囲まれた部分の面積を$S_1$とし,$C$,$\ell_1$および直線$\ell_2:x=-4$によって囲まれた部分の面積を$S_2$とするとき,$S_1+S_2=[ク]$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第2問
次の空欄$[$19$]$~$[$42$]$にあてはまる数字を入れよ.ただし,空欄$[$19$]$,$[$21$]$には$+$または$-$の記号が入る.

(1)原点$\mathrm{O}$を中心とする半径$5$の円と直線$y=-2x$との交点のうち,$y$座標が正となる点を$\mathrm{A}$とする.線分$\mathrm{OA}$が$x$軸の正の向きとなす角を$\theta (0^\circ<\theta<{180}^\circ)$とする.

(i) $\tan \theta=[$19$][$20$]$であり,
$\cos \theta=[$21$] \frac{\sqrt{[$22$]}}{[$23$]}$であり,

点$\mathrm{A}$の座標は$\displaystyle \left( -\sqrt{[$24$]},\ [$25$] \sqrt{[$26$]} \right)$である.
(i) 点$(3 \sqrt{5},\ 0)$を$\mathrm{B}$とするとき,$\mathrm{AB}=[$27$][$28$]$であり,三角形$\mathrm{OAB}$の外接円の半径は$\displaystyle \frac{[$29$] \sqrt{[$30$]}}{[$31$]}$である.

(2)下図のように半径$r$の扇形$\mathrm{ABC}$があり,$\angle \mathrm{CAB}={90}^\circ$とする.直線$\mathrm{CA}$の延長線上に点$\mathrm{D}$をとり,$\displaystyle \sin \angle \mathrm{ADB}=\frac{1}{5}$とする.この扇形$\mathrm{ABC}$と三角形$\mathrm{ADB}$の両方からなる図形を直線$\mathrm{CD}$を軸として回転させてできる立体の表面積を$S$,体積を$V$とする.

(i) $\displaystyle r=\frac{3}{2}$のときの$S$は,$r=1$のときの$\displaystyle \frac{[$32$]}{[$33$]}$倍であり,$V$は$r=1$のときの$\displaystyle \frac{[$34$][$35$]}{[$36$][$37$]}$倍である.
(ii) $r=1$のとき,$S=[$38$] \pi$であり,
$\displaystyle V=\frac{[$39$]}{[$40$]} \left( [$41$]+\sqrt{[$42$]} \right) \pi$である.
(図は省略)
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$38$]$~$[$60$]$にあてはまる数字を入れよ.

原点を$\mathrm{O}$とする座標平面上に$4$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ -1)$,$\mathrm{D}(\cos \theta,\ 0)$がある.ただし$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,
(1)$\triangle \mathrm{ABD}$の面積は$\displaystyle \frac{[$38$]-\cos \theta}{[$39$]}$
$2$点$\mathrm{B}$,$\mathrm{C}$を通る直線$\ell_1$の方程式は
\[ y=x-[$40$] \]
$2$点$\mathrm{A}$,$\mathrm{D}$を通る直線$\ell_2$の方程式は
\[ y=-\frac{x}{\cos \theta}+[$41$] \]
$\ell_1$と$\ell_2$の交点を$\mathrm{E}$とすると,$\mathrm{E}$の座標は
\[ \left( \frac{[$42$] \cos \theta}{[$43$]+\cos \theta},\ \frac{-[$44$]+\cos \theta}{[$45$]+\cos \theta} \right) \]
である.
(2)$\angle \mathrm{ADO}=\angle \mathrm{BDF}$をみたす点$\mathrm{F}$を線分$\mathrm{AB}$上にとると,$\mathrm{F}$の座標は
\[ \left( \frac{[$46$] \cos \theta}{[$47$]+\cos \theta},\ \frac{[$48$]-\cos \theta}{[$49$]+\cos \theta} \right) \]
$\triangle \mathrm{ADF}$の面積を$S$とおくと,
\[ S=[$50$]-\cos \theta-\frac{[$51$]}{[$52$]+\cos \theta} \]
相加平均と相乗平均の関係より,
\[ [$52$]+\cos \theta+\frac{[$51$]}{[$52$]+\cos \theta} \geqq [$53$] \sqrt{$[$54$]$} \]
この等号は$\cos \theta=-[$55$]+\sqrt{[$56$]}$のとき成立する.よって
\[ [$57$]<S \leqq [$58$]-[$59$] \sqrt{[$60$]} \]
である.
上智大学 私立 上智大学 2014年 第2問
$\angle \mathrm{A}$が鋭角で$\mathrm{AB}=6$,$\mathrm{AC}=4$の$\triangle \mathrm{ABC}$がある.$\angle \mathrm{A}$の二等分線と直線$\mathrm{BC}$の交点を$\mathrm{D}$,線分$\mathrm{AD}$を$2:1$に内分する点を$\mathrm{E}$とし,直線$\mathrm{BE}$と直線$\mathrm{AC}$の交点を$\mathrm{F}$とする.

(1)面積比$\triangle \mathrm{ABE}:\triangle \mathrm{ABC}$を最も簡単な整数比で表すと,
\[ \triangle \mathrm{ABE}:\triangle \mathrm{ABC}=[コ]:[サ] \]
である.
(2)線分比$\mathrm{AF}:\mathrm{FC}$を最も簡単な整数比で表すと,
\[ \mathrm{AF}:\mathrm{FC}=[シ]:[ス] \]
である.
(3)$\triangle \mathrm{ABE}$の面積が$\displaystyle \frac{8}{5}\sqrt{5}$であるとき,$\displaystyle \sin \angle \mathrm{BAC}=\frac{\sqrt{[セ]}}{[ソ]}$,$\mathrm{BC}=[タ] \sqrt{[チ]}$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{[ツ]}{[テ]}$である.
また,$\triangle \mathrm{ABC}$の外接円の半径は$[ト]$であり,内接円の半径は$\sqrt{[ナ]}-[ニ]$である.
上智大学 私立 上智大学 2014年 第3問
$\displaystyle f(x)=\frac{1}{4}(x^3-3x^2-9x+3)$とする.

(1)関数$f(x)$は,$x=[テ]$で極大値$[ト]$をとり,$x=[ナ]$で極小値$[ニ]$をとる.
(2)$y=f(x)$のグラフと$y$軸との交点における接線の方程式は,$\displaystyle y=\frac{[ヌ]}{[ネ]}x+\frac{[ノ]}{[ハ]}$である.
(3)実数からなる集合
\[ A=\{x \;|\; f(x)>0 \},\quad B=\{x \;|\; x \geqq b\} \]
を考える.ただし,$b$は整数とする.

(i) $A \subset B$となる最大の整数$b$は$[ヒ]$である.
(ii) $B \subset A$となる最小の整数$b$は$[フ]$である.
(iii) $b \in A$であり,$B \subset A$とならない整数$b$は$[ヘ]$個ある.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\angle \mathrm{B}={60}^\circ$の$\triangle \mathrm{ABC}$がある.

(1)$\mathrm{AC}=[ア]$,$\triangle \mathrm{ABC}$の面積は$[イ] \sqrt{[ウ]}$,$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[エ]}$である.
(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[オ]}{[カ]} \sqrt{[キ]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の点$\mathrm{B}$を含まない弧$\mathrm{AC}$上に$\mathrm{AD}=3$となる点$\mathrm{D}$をとる.このとき,$\mathrm{CD}=[ク]$である.
(4)$\displaystyle \cos \angle \mathrm{BAD}=\frac{[ケ]}{[コ]}$,$\displaystyle \mathrm{BD}=\frac{[サ]}{[シ]}$である.
(5)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\displaystyle \cos \angle \mathrm{AED}=\frac{[ス]}{[セ]}$である.
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
立教大学 私立 立教大学 2014年 第3問
座標平面上に放物線$\displaystyle y=x^2+\frac{1}{16}$と円$x^2+y^2-3y+1=0$がある.このとき,次の問に答えよ.

(1)円の中心の座標と半径を求めよ.
(2)円の中心と円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$を通る直線の傾きを求めよ.
(3)円周上の点$\displaystyle \left( \frac{1}{2},\ \frac{1}{2} \right)$における円の接線の方程式を求めよ.
(4)$(3)$で求めた接線と放物線のすべての交点の座標を求めよ.
(5)$(3)$で求めた接線と放物線で囲まれた部分の面積を求めよ.
東京理科大学 私立 東京理科大学 2014年 第2問
平面上に同一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が与えられているとし,$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が
\[ 4 \overrightarrow{\mathrm{AP}}+7 \overrightarrow{\mathrm{BP}}+2 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
を満たしているとする.線分$\mathrm{AP}$を延長した直線と線分$\mathrm{BC}$との交点を$\mathrm{Q}$,線分$\mathrm{BP}$を延長した直線と線分$\mathrm{AC}$との交点を$\mathrm{R}$とおく.


(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ][ウ]} \overrightarrow{\mathrm{AB}}+\frac{[エ]}{[オ][カ]} \overrightarrow{\mathrm{AC}}$である.

(2)点$\mathrm{P}$は線分$\mathrm{AQ}$を$[キ]:[ク]$に内分する点であり,点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ケ]:[コ]$に内分する点である.
(3)$\triangle \mathrm{APB}$の面積を$S$,四角形$\mathrm{CQPR}$の面積を$T$とおくと,
\[ S:T=[サ]:[シ][ス] \]
である.
東京理科大学 私立 東京理科大学 2014年 第4問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

次の曲線と直線について考える.ただし,$a,\ b,\ c,\ d$は実数で,$a>0$,$b$は$0$でないとする.

$C:y=ax^2+bx+c$
$\ell_1:y=x$
$\displaystyle \ell_2:y=-\frac{1}{b}x-d$

$C$は,$x$軸と点$\mathrm{P}$で接し,$\ell_1$と点$\mathrm{Q}$で接する.$\ell_2$は点$\mathrm{P}$を通るものとする.また,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle b=\frac{[リ]}{[ル]},\ ac=\frac{[レ]}{[ロ][ワ]}$
(2)$2$直線$\ell_1,\ \ell_2$と曲線$C$で囲まれる図形の面積が$2$であるとき,
\[ a=\frac{[ヲ]}{[ン]},\quad d=[あ] \]
である.
(3)このときの点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標はそれぞれ,
\[ \mathrm{P} (-[い],\ 0),\quad \mathrm{Q}([う],\ [う]),\quad \mathrm{R} \left( -\frac{[え]}{[お]},\ -\frac{[え]}{[お]} \right) \]
である.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。