タグ「交点」の検索結果

56ページ目:全1364問中551問~560問を表示)
昭和大学 私立 昭和大学 2014年 第4問
四角形$\mathrm{ABCD}$は円$O$に内接していて,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CD}=7$,$\mathrm{DA}=5$とする.

(1)$\angle \mathrm{A}$の大きさを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$O$の半径を求めよ.
(4)三角形$\mathrm{ABD}$の内接円の半径を求めよ.
(5)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\sin \angle \mathrm{AEB}$の値を求めよ.
青山学院大学 私立 青山学院大学 2014年 第2問
平面上に,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\mathrm{OA}=2$,$\mathrm{OB}=3$であるような三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.三角形$\mathrm{ABP}$が正三角形になるように,直線$\mathrm{AB}$に関して点$\mathrm{O}$の反対側に点$\mathrm{P}$をとる.このとき,

(1)$\displaystyle \overrightarrow{\mathrm{OM}}=\frac{[$13$]}{[$14$]} \overrightarrow{\mathrm{OA}}+\frac{[$15$]}{[$16$]} \overrightarrow{\mathrm{OB}}$である.
(2)点$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,辺$\mathrm{AB}$との交点を$\mathrm{H}$とすると,
\[ \overrightarrow{\mathrm{OH}}=\frac{[$17$]}{[$18$][$19$]} \overrightarrow{\mathrm{OA}}+\frac{[$20$]}{[$21$][$22$]} \overrightarrow{\mathrm{OB}} \]
である.
(3)$\displaystyle \mathrm{MP}=\frac{\sqrt{[$23$][$24$]}}{[$25$]}$で,$\overrightarrow{\mathrm{MP}}$と$\overrightarrow{\mathrm{OH}}$とが平行であることに注意すると,
\[ \overrightarrow{\mathrm{MP}}=\frac{[$26$] \sqrt{[$27$]}}{[$28$]} \overrightarrow{\mathrm{OA}}+\frac{\sqrt{[$29$]}}{[$30$]} \overrightarrow{\mathrm{OB}} \]
である.
青山学院大学 私立 青山学院大学 2014年 第3問
下図のように,点$\mathrm{O}$を中心とし,半径が$1$で中心角が$\displaystyle \frac{2}{3} \pi$の扇形$\mathrm{OAB}$がある.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす角として,弧$\mathrm{AB}$上に,$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{BOQ}=\theta$を満たす点$\mathrm{P}$,$\mathrm{Q}$をとる.また,点$\mathrm{P}$から線分$\mathrm{OA}$に垂線を下ろし,線分$\mathrm{OA}$との交点を$\mathrm{R}$とする.点$\mathrm{Q}$から線分$\mathrm{OB}$に垂線を下ろし,線分$\mathrm{OB}$との交点を$\mathrm{S}$とする.このとき,以下の問に答えよ.
(図は省略)

(1)三角形$\mathrm{OPR}$の面積を$\theta$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の面積を$\theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,五角形$\mathrm{ORPQS}$の面積の最大値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第3問
次の各問に答えよ.ただし,$(2)$は答のみ解答欄に記入せよ.

(1)放物線$y=ax^2+bx (a>0)$と直線$y=mx$が異なる$2$点で交わるとする.原点と異なる交点の$x$座標を$\alpha$とするとき,放物線と直線で囲まれた図形の面積は$\displaystyle S=\frac{1}{6}a |\alpha|^3$であることを示せ.
(2)$2$つの放物線$C_1:y=a_1x^2+b_1x$,$C_2:y=a_2x^2+b_2x$が異なる$2$点で交わるとする.ただし,$a_1a_2<0$とする.

(i) 放物線$C_1$,$C_2$の$2$つの交点を通る直線を$\ell:y=mx$とするとき,$m$を求めよ.
(ii) 放物線$C_i$と直線$\ell$で囲まれた図形の面積を$S_i (i=1,\ 2)$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(iii) $m=1$かつ$S_1=S_2$のとき,$a_i,\ b_i (i=1,\ 2)$が満たす条件を求めよ.
大同大学 私立 大同大学 2014年 第7問
$\triangle \mathrm{ABC}$において,$\displaystyle \cos A=\frac{2}{3}$,$\mathrm{BC}=10$とする.

(1)$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(2)$\angle \mathrm{BAC}$の$2$等分線と$\triangle \mathrm{ABC}$の外接円の交点のうち$\mathrm{A}$と異なる方を$\mathrm{D}$とする.$\mathrm{BD}$を求めよ.
(3)$\mathrm{AB}=3 \sqrt{2}$のとき,$\mathrm{AD}$を求めよ.
早稲田大学 私立 早稲田大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に

放物線$C_1:y=x^2$,円$C_2:x^2+(y-a)^2=1 \quad (a \geqq 0)$

がある.$C_2$の点$(0,\ a+1)$における接線と$C_1$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\triangle \mathrm{OAB}$が$C_2$に外接しているとする.次の問に答えよ.

(1)$a$を求めよ.
(2)点$(s,\ t)$を$(-1,\ a)$,$(1,\ a)$,$(0,\ a-1)$と異なる$C_2$上の点とする.そして点$(s,\ t)$における$C_2$の接線と$C_1$との$2$つの交点を$\mathrm{P}(\alpha,\ \alpha^2)$,$\mathrm{Q}(\beta,\ \beta^2)$とする.このとき,${(\alpha-\beta)}^2-\alpha^2 \beta^2$は$s,\ t$によらない定数であることを示せ.
(3)$(2)$において,点$\mathrm{P}(\alpha,\ \alpha^2)$から$C_2$への$2$つの接線が再び$C_1$と交わる点を$\mathrm{Q}(\beta,\ \beta^2)$,$\mathrm{R}(\gamma,\ \gamma^2)$とする.$\beta+\gamma$および$\beta\gamma$を$\alpha$を用いて表せ.
(4)$(3)$の$2$点$\mathrm{Q}$,$\mathrm{R}$に対し,直線$\mathrm{QR}$は$C_2$と接することを示せ.
京都女子大学 私立 京都女子大学 2014年 第2問
下の図において,点$\mathrm{O}$は$\triangle \mathrm{ABC}$の外心である.点$\mathrm{D}$は$2$点$\mathrm{B}$,$\mathrm{O}$を通る円$\mathrm{O}_1$と辺$\mathrm{BC}$との交点,点$\mathrm{E}$は円$\mathrm{O}_1$と辺$\mathrm{AB}$との交点である.また,点$\mathrm{F}$は$3$点$\mathrm{O}$,$\mathrm{D}$,$\mathrm{C}$を通る円$\mathrm{O}_2$と,辺$\mathrm{AC}$の延長との交点である.次の問に答えよ.
(図は省略)

(1)$4$点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{O}$,$\mathrm{F}$は同一円周上にあることを証明せよ.
(2)円$\mathrm{O}_1$の半径を$R_1$,円$\mathrm{O}_2$の半径を$R_2$,$4$点$\mathrm{A}$,$\mathrm{E}$,$\mathrm{O}$,$\mathrm{F}$を通る円の半径を$R_3$とおく.$R_1=R_2=R_3$を証明せよ.
昭和大学 私立 昭和大学 2014年 第1問
次の各問に答えよ.

(1)$(1$-$1)$ 連立不等式$600<2^{x+2}-2^x<900$を満たす自然数$x$を求めよ.
$(1$-$2)$ 連立不等式$21<\log_2 x^6<22$を満たす自然数$x$を求めよ.
(2)$(2$-$1)$ $0 \leqq x \leqq \pi$のとき,方程式$\sqrt{3} \sin x-\cos x=a$が相異なる$2$つの解をもつような定数$a$の値の範囲を求めよ.
$(2$-$2)$ $2$次方程式$\sqrt{3}x^2+2x-\sqrt{3}=0$の$2$つの解を$\tan \alpha$,$\tan \beta$とするとき,$\alpha+\beta$の値を求めよ.ただし,$0<\alpha+\beta<\pi$とする.
(3)三角形$\mathrm{OAB}$において$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}={120}^\circ$とし,点$\mathrm{O}$から辺$\mathrm{AB}$に下ろした垂線の足を$\mathrm{H}$,辺$\mathrm{OB}$の中点を$\mathrm{M}$,線分$\mathrm{OH}$と線分$\mathrm{AM}$の交点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,次の問に答えよ.
$(3$-$1)$ $\mathrm{AH}:\mathrm{HB}$を求めよ.
$(3$-$2)$ $\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
久留米大学 私立 久留米大学 2014年 第3問
$3$つの直線$\ell:ax-y=0$,$m:x-2y-2=0$,$n:x+y-5=0$があり,直線$\ell$と直線$m$の交点を$\mathrm{A}$,直線$\ell$と直線$n$の交点を$\mathrm{B}$,直線$m$と直線$n$の交点を$\mathrm{C}$とし,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$のすべてを通る円を$D$とする.ただし,$a$は実数で$\displaystyle a>\frac{1}{2}$とする.

(1)$\mathrm{BC}$が円$D$の直径となるとき点$\mathrm{A}$の座標は$[$7$]$である.
(2)三角形$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{15}{2}$,かつ$\angle \mathrm{A}$が鋭角であるとき,$a=[$8$]$であり,円$D$の方程式は$[$9$]$となる.
安田女子大学 私立 安田女子大学 2014年 第3問
放物線$y=x^2+ax-1$と直線$y=x+b$について,次の問いに答えよ.

(1)放物線と直線が$2$つの交点を持つための条件を,$a$と$b$を用いて表せ.
(2)$2$つの交点の距離が$1$となるための条件を,$a$と$b$を用いて表せ.
(3)$2$つの交点を結んだ線分の中点がちょうど原点となるときの$a$と$b$の値をそれぞれ求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。