タグ「交点」の検索結果

52ページ目:全1364問中511問~520問を表示)
鳥取大学 国立 鳥取大学 2014年 第4問
$a,\ b$を正の実数とする.$xy$平面内の楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の点$\mathrm{P}$における$C$の接線を$\ell$とする.$\mathrm{P}$を媒介変数表示により$\mathrm{P}(a \cos t,\ b \sin t) (0 \leqq t<2\pi)$とするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$に直交し,楕円$C$上の点$\mathrm{Q}(a \cos \theta,\ b \sin \theta)$ $(0<\theta<\pi)$で$C$に接する直線を$m$とする.接点$\mathrm{Q}$の座標を$a,\ b,\ t$を用いて表し,直線$m$の方程式を求めよ.
(3)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲にあるとき,直線$\ell$と$(2)$で求めた直線$m$との交点を$\mathrm{R}$とする.線分$\mathrm{OR}$の長さを求めよ.ただし$\mathrm{O}$は原点とする.
愛媛大学 国立 愛媛大学 2014年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=1$,$\angle \mathrm{A}={90}^\circ$を満たす直角二等辺三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{CP}$と線分$\mathrm{BQ}$の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{AR}$の長さを求めよ.
(2)$\displaystyle \left( \frac{1}{3} \right)^{26}$を小数で表すと,小数第何位に初めて$0$でない数字が現れるか.ただし,必要ならば$\log_{10}3=0.4771$として計算せよ.
(3)$k$を実数とし,不等式$x^2-2x-3>0$,$x^2-(k+1)x+k>0$を満たす実数$x$の集合をそれぞれ$A,\ B$とする.このとき,$A \subset B$であるための必要十分条件を$k$を用いて表せ.
愛媛大学 国立 愛媛大学 2014年 第4問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第3問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
宮崎大学 国立 宮崎大学 2014年 第1問
次の各問に答えよ.

(1)下図のように半径$r_1$の円$\mathrm{O}_1$と半径$r_2$の円$\mathrm{O}_2$が外接している.円$\mathrm{O}_1$と円$\mathrm{O}_2$の接点を$\mathrm{P}$とする.円$\mathrm{O}_1$の周上に点$\mathrm{P}$と異なる点$\mathrm{A}$をとり,線分$\mathrm{AP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{B}$とする.また,円$\mathrm{O}_1$の周上に点$\mathrm{P}$,点$\mathrm{A}$と異なる点$\mathrm{C}$をとり,線分$\mathrm{CP}$の延長と円$\mathrm{O}_2$の交点を$\mathrm{D}$とする.このとき,次の$(ⅰ)$,$(ⅱ)$に答えよ.
(図は省略)

(i) 点$\mathrm{P}$における円$\mathrm{O}_1$の接線を利用して,$\mathrm{AC} \para \mathrm{BD}$であることを示せ.
(ii) 円$\mathrm{O}_1$の中心と$\mathrm{O}_2$の中心を結ぶ直線を利用して,点$\mathrm{P}$は線分$\mathrm{AB}$を$r_1:r_2$に内分することを示せ.

(2)下図のように半径$3$の円$C_1$,半径$4$の円$C_2$,半径$5$の円$C_3$が互いに外接している.円$C_2$と円$C_3$の接点を$\mathrm{J}$,円$C_3$と円$C_1$の接点を$\mathrm{K}$,円$C_1$と円$C_2$の接点を$\mathrm{L}$とする.線分$\mathrm{JL}$の延長と円$C_1$の交点を$\mathrm{M}$とし,線分$\mathrm{JK}$の延長と円$C_1$の交点を$\mathrm{N}$とする.このとき,四角形$\mathrm{KLMN}$の面積は$\triangle \mathrm{JLK}$の面積の何倍であるかを求めよ.
(図は省略)
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
長崎大学 国立 長崎大学 2014年 第1問
$k$を実数とし,円$x^2+y^2=1$と直線$x+2y=k$が異なる$2$点で交わるものとする.その$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とする.次の問いに答えよ.

(1)$k$の値の範囲を求めよ.
(2)$2$点$\mathrm{P}$,$\mathrm{Q}$を通る円の中心は直線$y=2x$上にあることを示せ.
(3)上の$(2)$の円の中心を$(a,\ 2a)$,半径を$r$とする.$r^2$を$a$と$k$で表せ.
(4)点$\mathrm{R}$の座標を$(2,\ 1)$とする.$k$の値が$(1)$で求めた範囲を動くとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の中心の$x$座標の範囲を求めよ.
長崎大学 国立 長崎大学 2014年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$とする.$\angle \mathrm{A}$の$2$等分線と$\angle \mathrm{B}$の$2$等分線は点$\mathrm{I}$で交わる.$\angle \mathrm{B}$の$2$等分線と辺$\mathrm{AC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}:\mathrm{DC}$と$\mathrm{BI}:\mathrm{ID}$を求めよ.
(2)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)$\angle \mathrm{A}=\theta$とする.$\cos \theta$と内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(4)実数$x,\ y$を用いて$\overrightarrow{\mathrm{AP}}=x \overrightarrow{b}+y \overrightarrow{c}$と表される点$\mathrm{P}$を考える.点$\mathrm{P}$が辺$\mathrm{AB}$の垂直$2$等分線上にあるとき,$x$と$y$が満たす関係式を求めよ.
(5)$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.辺$\mathrm{AB}$の垂直$2$等分線と辺$\mathrm{AC}$の垂直$2$等分線は点$\mathrm{O}$で交わる.$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
長崎大学 国立 長崎大学 2014年 第3問
曲線$C:y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.ただし,$1<t<e$とする.$e$は自然対数の底である.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を$\mathrm{Q}$とし,接線$\ell$と$x$軸との交点を$\mathrm{R}$とする.$\mathrm{Q}$と$\mathrm{R}$の座標を求めよ.
(3)接線$\ell$と$x$軸および$y$軸によって囲まれた図形を$D_1$,接線$\ell$と曲線$C$および$x$軸によって囲まれた図形を$D_2$とする.$D_1$の面積$S_1(t)$と$D_2$の面積$S_2(t)$を求めよ.
(4)$S(t)=S_1(t)+S_2(t)$とおく.このとき$S(t)$の増減を調べ,その最小値およびそのときの$t$の値を求めよ.
長崎大学 国立 長崎大学 2014年 第3問
曲線$C:y=\log x$上の点$\mathrm{P}(t,\ \log t)$における接線を$\ell$とする.ただし,$1<t<e$とする.$e$は自然対数の底である.次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を$\mathrm{Q}$とし,接線$\ell$と$x$軸との交点を$\mathrm{R}$とする.$\mathrm{Q}$と$\mathrm{R}$の座標を求めよ.
(3)接線$\ell$と$x$軸および$y$軸によって囲まれた図形を$D_1$,接線$\ell$と曲線$C$および$x$軸によって囲まれた図形を$D_2$とする.$D_1$の面積$S_1(t)$と$D_2$の面積$S_2(t)$を求めよ.
(4)$S(t)=S_1(t)+S_2(t)$とおく.このとき$S(t)$の増減を調べ,その最小値およびそのときの$t$の値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。