タグ「交点」の検索結果

45ページ目:全1364問中441問~450問を表示)
信州大学 国立 信州大学 2014年 第4問
$f(x)=\log (x+\sqrt{x^2+1})$とし,曲線$y=f(x)$を$C$とする.ただし,対数は自然対数である.

(1)$f(x)$の導関数を求めよ.
(2)曲線$C$と直線$y=1$の交点$\mathrm{P}$の座標を求めよ.
(3)曲線$C$,直線$y=1$および$y$軸で囲まれた図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2014年 第2問
放物線$y=x^2$上の動点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(q,\ q^2)$が次の条件をみたしている.
\[ 0<p<q,\quad \angle \mathrm{POQ}=\frac{\pi}{4} \]
ただし$\mathrm{O}$は原点である.点$\mathrm{P}$と点$\mathrm{Q}$における接線の交点を$\mathrm{R}$とする.

(1)$p$のとり得る値の範囲を求めよ.
(2)$q$を$p$の式で表せ.
(3)点$\mathrm{R}$の$x$座標,$y$座標それぞれのとり得る値の範囲を求めよ.
(4)点$\mathrm{R}$が描く曲線の方程式を求めよ.
(5)点$\mathrm{R}$が描く曲線の漸近線を求めよ.
信州大学 国立 信州大学 2014年 第1問
次の問いに答えよ.

(1)$0<\theta<\pi$のとき,不等式$\cos 3\theta+4 \cos^2 \theta<0$を満たす$\theta$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$2$直線$\mathrm{BE}$と$\mathrm{CD}$の交点を$\mathrm{P}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}$の和を求めよ.

{\bf 補足説明}
設問中の式の意味は
\[ \sum_{n=1}^\infty \frac{1}{2+4+6+\cdots +2n}=\frac{1}{2}+\frac{1}{2+4}+\frac{1}{2+4+6}+\frac{1}{2+4+6+8}+\cdots \]
である.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
岩手大学 国立 岩手大学 2014年 第1問
次の問いに答えよ.

(1)次の不等式を解け.ただし,$a$は定数で,$a>0$,$a \neq 1$を満たすものとする.
\[ a^{2x}-a^x-6<0 \]
(2)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=5$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{P}$とするとき,$\mathrm{BP}$の長さを求めよ.
(3)赤玉$4$個と白玉$5$個が入った袋がある.無作為に玉を$2$個同時に取り出したとき,赤玉の出る個数の期待値を求めよ.
岩手大学 国立 岩手大学 2014年 第2問
$a$を正の実数とする.平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA}}|=a$,$|\overrightarrow{\mathrm{OB}}|=1$,$|\overrightarrow{\mathrm{OA}}-3 \overrightarrow{\mathrm{OB}}|=\sqrt{a^2+9}$を満たしている.点$\mathrm{P}$を$\overrightarrow{\mathrm{OP}}=2 \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるように定め,線分$\mathrm{AB}$と線分$\mathrm{OP}$の交点を$\mathrm{Q}$,線分$\mathrm{BQ}$の中点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(4)$\overrightarrow{\mathrm{OR}}$と$\overrightarrow{\mathrm{AB}}$が垂直になるとき,$a$の値と三角形$\mathrm{OQR}$の面積を求めよ.
岩手大学 国立 岩手大学 2014年 第3問
座標平面上に点$\mathrm{A}(\pi,\ 1)$がある.また,関数$y=\cos x$のグラフ上に点$\mathrm{P}$をとり,$\mathrm{A}$と$\mathrm{P}$との中点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)$\mathrm{P}$の座標を$(t,\ \cos t)$とするとき,$\mathrm{Q}$の座標を$t$を用いて表せ.
(2)$\mathrm{Q}$の座標を$(x,\ y)$とするとき,$y$を$x$の関数として表せ.また,$y$の最大値と最小値を求めよ.
(3)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフを同一の座標平面上に描け.ただし,どちらも$0 \leqq x \leqq 2\pi$の範囲で描け.
(4)$(2)$で求めた関数を$f(x)$とする.$2$つの関数$y=\cos x$と$y=f(x)$のグラフの交点について,その$y$座標の取り得る値をすべて求めよ.ただし,$x$の範囲はすべての実数とする.
福岡教育大学 国立 福岡教育大学 2014年 第2問
正六角形$\mathrm{ABCDEF}$において,辺$\mathrm{DE}$の中点を$\mathrm{P}$とし,線分$\mathrm{AP}$と$\mathrm{BF}$の交点を$\mathrm{Q}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AF}}$を用いて表せ.
(2)$\mathrm{AQ}:\mathrm{QP}$を最も簡単な整数の比で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|=1$のとき,$\triangle \mathrm{BPQ}$の面積を求めよ.
琉球大学 国立 琉球大学 2014年 第1問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{E}$とし,線分$\mathrm{CD}$,$\mathrm{BE}$の交点を$\mathrm{P}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\mathrm{AP}=\sqrt{7}$のとき,$\angle \mathrm{BAC}$の大きさを求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
曲線$\displaystyle C_1:y=\cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$上の点$\displaystyle (t,\ \cos t) \left( 0<t<\frac{\pi}{2} \right)$における曲線$C_1$の接線を$\ell$とする.また,$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$と接線$\ell$との交点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とし,放物線$\displaystyle C_2:y=-\frac{x^2}{2}+ax+c$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るものとする.このとき,次の各問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$2$曲線$C_1$,$C_2$と$2$直線$x=0$,$\displaystyle x=\frac{\pi}{2}$で囲まれる部分の面積を$S$とする.$S$を,$a$と$c$を用いて表せ.
(3)$(2)$の$S$が最小となる$t$の値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。