タグ「交点」の検索結果

38ページ目:全1364問中371問~380問を表示)
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle \frac{1}{1-a}+\frac{1}{1+a}+\frac{2}{1+a^2}+\frac{4}{1+a^4}+\frac{8}{1+a^8}$を計算しなさい.

(2)$\displaystyle \frac{1}{\sqrt{5}-2}$の整数部分を$a$,小数部分を$b$とするとき,$a$と$b$の値を求めよ.

(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+4x-2k$,$y=x^2+2kx+3k$をそれぞれ$C_1$,$C_2$とする.以下の問いに答えなさい.

(i) $C_1$の頂点の$y$座標が$1$であるとき,$k$の値を求めよ.
(ii) $C_2$が$x$軸と接するとき,$k$の値を求めよ.

(4)$\mathrm{AB}=5$,$\mathrm{AC}=4$,$\angle \mathrm{BAC}={60}^\circ$である$\triangle \mathrm{ABC}$がある.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
(5)男子$4$人,女子$3$人が一列に並ぶとき,女子$3$人が続く並び方は,$[ア]$通りであり,両端に男子が並ぶのは$[イ]$通りである.
京都女子大学 私立 京都女子大学 2015年 第2問
放物線$y=x^2-2ax+b$($a,\ b$は定数)と直線$y=2x+3$が$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもち,点$\mathrm{P}$がこの放物線の頂点であるとき,次の問に答えよ.

(1)点$\mathrm{P}$の座標を$a$で表せ.
(2)点$\mathrm{Q}$の座標を$a$で表せ.
(3)原点を$\mathrm{O}$とする.$b$が最小値をとるときの$\triangle \mathrm{QPO}$の面積を求めよ.
京都女子大学 私立 京都女子大学 2015年 第3問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$の長さを$\sqrt{3}$,辺$\mathrm{BC}$の長さを$2$,辺$\mathrm{CA}$の長さを$1$とし,$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$,$\angle \mathrm{C}$の二等分線と線分$\mathrm{AD}$の交点を$\mathrm{E}$とする.このとき,次の問に答えよ.

(1)線分$\mathrm{AD}$と$\mathrm{AE}$のそれぞれの長さを求めよ.
(2)$\triangle \mathrm{AEC}$の面積を求めよ.
(3)$\triangle \mathrm{AEC}$の面積と$\triangle \mathrm{EDC}$の面積の比を求めよ.
西南学院大学 私立 西南学院大学 2015年 第6問
三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.このとき$\mathrm{AB}:\mathrm{AC}=\mathrm{BD}:\mathrm{DC}$が成り立つことを証明せよ.
天使大学 私立 天使大学 2015年 第5問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$2:3$に内分する点を$\mathrm{R}$とし,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{Q}$とする.さらに,線分$\mathrm{BQ}$と線分$\mathrm{CR}$の交点を$\mathrm{O}$とし,直線$\mathrm{AO}$と辺$\mathrm{BC}$との交点を$\mathrm{P}$とする.次の問いに答えなさい.

(1)長さの比$\mathrm{BP}:\mathrm{PC}$を最も簡単な正の整数の比で表しなさい.
\[ \mathrm{BP}:\mathrm{PC}=\mkakko{$\mathrm{a}$}:\mkakko{$\mathrm{b}$} \]
(2)長さの比$\mathrm{PO}:\mathrm{OA}$を最も簡単な正の整数の比で表しなさい.
\[ \mathrm{PO}:\mathrm{OA}=\mkakko{$\mathrm{c}$}:\mkakko{$\mathrm{d}$} \]
(3)$\triangle \mathrm{ABC}$と$\triangle \mathrm{OBC}$の面積を,それぞれ$S_1$と$S_2$とおく.面積の比$S_1:S_2$を最も簡単な正の整数の比で表しなさい.
\[ S_1:S_2=\mkakko{$\mathrm{e}$} \mkakko{$\mathrm{f}$}:\mkakko{$\mathrm{g}$} \]
(4)$\triangle \mathrm{OBP}$の面積を,$S_3$とおく.面積の比$S_1:S_3$を最も簡単な正の整数の比で表しなさい.
\[ S_1:S_3=\mkakko{$\mathrm{h}$} \mkakko{$\mathrm{i}$}:\mkakko{$\mathrm{j}$} \]
西南学院大学 私立 西南学院大学 2015年 第4問
平行四辺形$\mathrm{ABCD}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{E}$,辺$\mathrm{AD}$を$3:2$に内分する点を$\mathrm{F}$,辺$\mathrm{AD}$の中点を$\mathrm{G}$とする.直線$\mathrm{BG}$と直線$\mathrm{EF}$の交点を$\mathrm{P}$とすると,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ネ]}{[ノ]} \overrightarrow{\mathrm{AB}}+\frac{[ハ]}{[ヒ]} \overrightarrow{\mathrm{AD}} \]
である.

また,直線$\mathrm{AP}$と直線$\mathrm{DC}$の交点を$\mathrm{Q}$とすると,
\[ \mathrm{DQ}:\mathrm{QC}=[フ]:[ヘ] \]
である.
西南学院大学 私立 西南学院大学 2015年 第6問
原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$がある.$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$を通る直線を$\ell$とするとき,以下の問に答えよ.

(1)$\ell$上の任意の点を$\mathrm{P}(\overrightarrow{p})$とすると,直線$\ell$のベクトル方程式は実数$t$に対して,
\[ \overrightarrow{p}=(1-t) \overrightarrow{a}+t \overrightarrow{b} \cdots\cdots① \]
となることを証明せよ.
(2)$\overrightarrow{a},\ \overrightarrow{b}$のなす角を$2$等分する直線$m$上の任意の点を$\mathrm{Q}(\overrightarrow{q})$とすると,直線$m$のベクトル方程式は,実数$k$に対して,
\[ \overrightarrow{q}=k \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|} +\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となることを証明せよ.
また,$\mathrm{P}(\overrightarrow{p})$が直線$\ell$と直線$m$の交点であるとき,式$①$の$t$を$|\overrightarrow{a}|$と$|\overrightarrow{b}|$で表せ.
大阪工業大学 私立 大阪工業大学 2015年 第4問
関数$f(x)=2 \sqrt{1-x^2}$に対し,曲線$y=f(x)$上の点$\mathrm{P}(a,\ 2 \sqrt{1-a^2})$における接線を$\ell$とする.$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の長さを$d$とするとき,次の問いに答えよ.ただし,$0<a<1$とする.

(1)$f(x)$を微分せよ.
(2)直線$\ell$の方程式を求めよ.
(3)$d^2$を$a$を用いて表せ.
(4)$d$の値が最小となるような$a$の値と,そのときの$d$の値を求めよ.
昭和薬科大学 私立 昭和薬科大学 2015年 第2問
関数$\displaystyle f(x)=\frac{1}{6} \int_0^3 x^2f(t) \, dt-\frac{1}{12} \int_{-3}^0 xf(t) \, dt-2$に対して,$2$つの曲線$C_1:y=x^2+1$,$C_2:y=f(x)$を考える.

(1)$f(x)=px^2+qx-2$とすると,$p=[ナ][ニ]$,$q=[ヌ]$である.
(2)点$(a,\ f(a))$(ただし,$a>1$とする)における曲線$C_2$の接線$\ell$と曲線$C_1$との異なる$2$つの交点を結ぶ線分の中点が$(-1,\ b)$のとき,$b=[ネ]$であり,$\ell$の方程式は$y=[ノ][ハ]x+[ヒ]$である.
(3)$(2)$で求めた接線$\ell$と曲線$C_2$および$y$軸で囲まれた図形の面積は$\displaystyle \frac{[フ]}{[ヘ]}$である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。