タグ「交点」の検索結果

36ページ目:全1364問中351問~360問を表示)
東京電機大学 私立 東京電機大学 2015年 第2問
\begin{mawarikomi}{45mm}{

(図は省略)
}
図のような平行六面体$\mathrm{OADB}$-$\mathrm{CEGF}$において,辺$\mathrm{DG}$を$x:1-x (0<x<1)$に内分する点を$\mathrm{Q}$,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{G}$を通る平面と直線$\mathrm{OQ}$の交点を$\mathrm{P}$とする.また,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$x$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}=k \overrightarrow{\mathrm{OQ}}$,$\overrightarrow{\mathrm{AP}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AG}}$とおくとき,$k$,$s$,$t$をそれぞれ$x$で表せ.
(3)$\mathrm{P}$が$\triangle \mathrm{ABG}$の重心と一致するとき,$x$の値を求めよ.

\end{mawarikomi}
東京電機大学 私立 東京電機大学 2015年 第3問
曲線$C:y=e^x$上の点$\mathrm{P}(t,\ e^t) (t>1)$における接線を$\ell$とおく.$C$と$y$軸の共有点を$\mathrm{A}$,$\ell$と$x$軸の交点を$\mathrm{Q}$とおく.原点を$\mathrm{O}$とおき,三角形$\mathrm{AOQ}$の面積を$S(t)$とおく.$\mathrm{Q}$を通り$y$軸に平行な直線,$y$軸,$C$および$\ell$で囲まれた図形の面積を$T(t)$とおく.このとき,次の問に答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\mathrm{Q}$の座標を求め,$S(t)$を$t$で表せ.
(3)$T(t)$を$t$で表せ.
(4)$\displaystyle \lim_{t \to 1+0}\frac{T(t)}{S(t)}$を求めよ.
津田塾大学 私立 津田塾大学 2015年 第2問
$a>b>0$をみたす実数$a,\ b$に対し,曲線$y=ax^2$を$C_1$とし,曲線$y=bx^2$を$C_2$とする.$C_1$上の点$(t,\ at^2) (t \neq 0)$での接線を$L_0$とする.$L_0$と$C_2$の$2$つの交点の$x$座標を$x_1,\ x_2$とする.

(1)$x_1+x_2$と$x_1x_2$を$a,\ b,\ t$を用いて表せ.
(2)$C_2$上の点$(x_1,\ b{x_1}^2)$,$(x_2,\ b{x_2}^2)$における接線をそれぞれ$L_1$,$L_2$とする.$L_1$と$L_2$の交点の座標を$a,\ b,\ t$を用いて表せ.
(3)$t$の値が変化するとき,$L_1$と$L_2$の交点の軌跡を求めよ.
北海道薬科大学 私立 北海道薬科大学 2015年 第4問
$2$つの曲線
\[ C_1:y=x(x-3)^2,\quad C_2:y=m^2x \quad (m \text{は正の実数}) \]
は異なる$3$点で交わるものとする.原点以外の交点の$x$座標を$\alpha,\ \beta (0<\alpha<\beta)$とする.

(1)$C_1$は,$x=[ア]$で極大値$[イ]$,$x=[ウ]$で極小値$[エ]$をとる.
(2)$m$の値の範囲は$[オ]<m<[カ]$であり
\[ \alpha=[キ]-m,\quad \beta=[ク]+m \]
である.
(3)$C_1$と$C_2$で囲まれた$2$つの領域の面積が等しくなるのは,$m=[ケ]$のときである.このとき,$2$つの領域の面積の和は$[コ]$となる.
神戸薬科大学 私立 神戸薬科大学 2015年 第9問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$5:2$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$7:2$に外分する点を$\mathrm{Q}$,直線$\mathrm{PQ}$と辺$\mathrm{BC}$の交点を$\mathrm{R}$とする.このとき,$\mathrm{BR}:\mathrm{CR}=[ネ]:[ノ]$であり,$\triangle \mathrm{BPR}$の面積は$\triangle \mathrm{ABC}$の面積の$[ハ]$倍である.
名城大学 私立 名城大学 2015年 第2問
空間内の$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2,\ 1,\ 1)$,$\mathrm{B}(1,\ 2,\ -1)$,$\mathrm{C}(-2,\ 4,\ 3)$を頂点とする四面体$\mathrm{OABC}$について,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{C}$から三角形$\mathrm{OAB}$に垂線を下ろす.この垂線と三角形$\mathrm{OAB}$との交点を$\mathrm{P}$とするとき,$\overrightarrow{\mathrm{CP}}$を求めよ.
(3)点$\mathrm{Q}$を辺$\mathrm{OC}$上にとる.四面体$\mathrm{OABQ}$の体積が$\displaystyle \frac{9}{4}$となるとき,$\overrightarrow{\mathrm{OQ}}$を求めよ.
東北学院大学 私立 東北学院大学 2015年 第6問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AC} \perp \mathrm{BD}$となるようにとり,線分$\mathrm{BD}$の中点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\mathrm{AC}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\mathrm{BF}:\mathrm{FC}$を求めよ.
東京医科大学 私立 東京医科大学 2015年 第4問
座標平面における曲線$\displaystyle C_1:y=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=\frac{12}{7} \cos x$の交点の$x$座標を$x_0$とするとき,
\[ \sin x_0=\frac{[ア]}{[イ]} \]
であり,曲線$C_1,\ C_2$と$y$軸とで囲まれた図形の面積を$S$とすれば
\[ S=\frac{[ウ]}{[エ]}+\frac{1}{2} \log \frac{[オ]}{[カキ]} \]
である.ただし,対数は自然対数とする.
東邦大学 私立 東邦大学 2015年 第5問
下の図のような$\angle \mathrm{B}$を直角とする直角三角形$\mathrm{ABC}$において,$\angle \mathrm{C}$の$3$等分線と辺$\mathrm{AB}$との$2$つの交点を$\mathrm{D}$,$\mathrm{E}$とする.$\mathrm{BC}=2$,$\displaystyle \mathrm{BD}=\frac{8}{3}$のとき,$\mathrm{AC}=[サ] \sqrt{[シ]}$である.
(図は省略)
西南学院大学 私立 西南学院大学 2015年 第5問
鋭角三角形$\mathrm{ABC}$において,$\mathrm{A}$から辺$\mathrm{BC}$に下した垂線の足を$\mathrm{D}$,$\mathrm{C}$から辺$\mathrm{AB}$に下した垂線の足を$\mathrm{E}$とする.$\mathrm{AD}$と$\mathrm{CE}$の交点を$\mathrm{F}$とし,$\mathrm{BF}$の延長と辺$\mathrm{AC}$の交点を$\mathrm{G}$とする.このとき以下の問に答えよ.

(1)四角形$\mathrm{BDFE}$は円に内接することを証明せよ.
(2)四角形$\mathrm{AEDC}$は円に内接することを証明せよ.
(3)三角形$\mathrm{ABG}$と三角形$\mathrm{ACE}$は相似であることを証明せよ.
(4)四角形$\mathrm{AEFG}$は円に内接することを証明せよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。