タグ「交点」の検索結果

31ページ目:全1364問中301問~310問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上で原点$\mathrm{O}$を中心,半径$1$の円を$S$とする.点$\mathrm{P}$が円$S$上を動くとき,$\mathrm{P}$における$S$の接線に点$\displaystyle \mathrm{A} \left( \frac{1}{2},\ 0 \right)$から下ろした垂線の交点$\mathrm{Q}$のなす軌跡を$C$とする.$x$軸の正の方向に対して$\mathrm{OP}$のなす角を$t$として,$\mathrm{P}$の座標を$(\cos t,\ \sin t)$で表す.このときの$\mathrm{Q}$の座標を$(f(t),\ g(t))$とする.

(1)$f(t),\ g(t)$を求めよ.
(2)$g(t)$の最大値を求めよ.
(3)$C$で囲まれた図形の$y \geqq 0$の部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
座標平面上に関数$f(x)=x^2-2x+2-|2x-2|$を用いて表される曲線$C:y=f(x)$がある.

(1)$y=f(x)$のグラフの概形を描け.
(2)$m$を定数とする.点$(0,\ 1)$を通る傾き$m$の直線と曲線$C$の交点の数を求めよ.
(3)直線$y=a^2$と曲線$C$によって囲まれる領域のうち,$a^2 \leqq y \leqq f(x)$かつ$0 \leqq x \leqq 2$を満たす部分の面積を求めよ.ただし,$0<a<1$とする.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第1問
直線$L$を$2x+y=4n$とする.ただし,$n$は自然数とする.原点を$\mathrm{O}$とし,直線$L$と$x$軸との交点を$\mathrm{A}$,直線$L$と$y$軸との交点を$\mathrm{B}$とした三角形$\mathrm{OAB}$を考える.以下の問いに答えよ.

(1)交点$\mathrm{A}$および交点$\mathrm{B}$の座標をそれぞれ求めよ.
(2)直線$M$を$x=k$(ただし$k=0,\ 1,\ \cdots,\ 2n$)とするとき,直線$L$と直線$M$の交点$\mathrm{P}$の座標を求めよ.
(3)$(2)$の直線$M$上の格子点($x$座標および$y$座標がともに整数である点)のうち,三角形$\mathrm{OAB}$の周上および内部にある格子点の総数$T_k$を求めよ.
(4)三角形$\mathrm{OAB}$の周上にある格子点および内部にある格子点の総数$T_n$を求めよ.
(5)三角形$\mathrm{OAB}$の面積$S_n$を求めよ.また,$(4)$で得られた格子点の総数$T_n$と面積$S_n$の比に関する次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{T_n}{S_n} \]
筑波大学 国立 筑波大学 2015年 第4問
$f(x)=\log (e^x+e^{-x})$とおく.曲線$y=f(x)$の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と$y$軸の交点の$y$座標を$b(t)$とおく.

(1)次の等式を示せ.
\[ b(t)=\frac{2te^{-t}}{e^t+e^{-t}}+\log (1+e^{-2t}) \]
(2)$x \geqq 0$のとき,$\log (1+x) \leqq x$であることを示せ.
(3)$t \geqq 0$のとき,
\[ b(t) \leqq \frac{2}{e^t+e^{-t}}+e^{-2t} \]
であることを示せ.
(4)$\displaystyle b(0)=\lim_{x \to \infty} \int_0^x \frac{4t}{(e^t+e^{-t})^2} \, dt$であることを示せ.
筑波大学 国立 筑波大学 2015年 第5問
$f(x),\ g(x),\ h(x)$を

$\displaystyle f(x)=\frac{1}{2}(\cos x-\sin x)$

$\displaystyle g(x)=\frac{1}{\sqrt{2}} \sin \left( x+\frac{\pi}{4} \right)$

$h(x)=\sin x$

とおく.$3$つの曲線$y=f(x)$,$y=g(x)$,$y=h(x)$の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$を満たす部分を,それぞれ$C_1$,$C_2$,$C_3$とする.

(1)$C_2$と$C_3$の交点の座標を求めよ.
(2)$C_1$と$C_3$の交点の$x$座標を$\alpha$とする.$\sin \alpha$,$\cos \alpha$の値を求めよ.
(3)$C_1$,$C_2$,$C_3$によって囲まれる図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2015年 第3問
$t$は実数で$\displaystyle 0<t<\frac{\pi}{2}$を満たすとする.平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 0)$,$\mathrm{P}(\cos t,\ \sin t)$,$\mathrm{Q}(1,\ \sin t)$をとる.このとき以下の問いに答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線を$\ell$,点$\mathrm{O}$と点$\mathrm{Q}$を通る直線を$m$とする.このとき$\ell,\ m$の交点$\mathrm{R}$の座標を求めよ.
(2)$t$が$\displaystyle 0<t<\frac{\pi}{2}$の範囲全体を動くときに点$\mathrm{R}$が描く曲線を$C$とする.このとき,点$(x,\ y) (x>0,\ y>0)$が$C$上にあるための条件を$x,\ y$の式で表せ.
(3)曲線$C$の点$\mathrm{R}$における接線を$n$とする.ある$t$に対して直線$\ell,\ m$がなす鋭角と直線$m,\ n$がなす鋭角が等しくなる.この状況のもとで,以下の問いに答えよ.

(i) 点$\mathrm{P}(\cos t,\ \sin t)$の座標を求めよ.
(ii) 直線$\ell$と$n$のなす鋭角を$\theta$とおく.また,点$\mathrm{O}$を中心とし半径が$1$の円と直線$n$との$2$交点のうち,$y$座標が正の点を$\mathrm{S}(\cos \phi,\ \sin \phi)$とおく.このとき,$\theta=\phi$を示せ.
福島大学 国立 福島大学 2015年 第4問
空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ -1)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$の方程式を求めなさい.
(2)平面$\alpha$に垂直になるように原点$\mathrm{O}$から直線を引いたとき,平面$\alpha$との交点$\mathrm{T}$の座標を求めなさい.
(3)$\triangle \mathrm{ABC}$の面積を求めなさい.
(4)四面体$\mathrm{OABC}$の体積を求めなさい.
宮城教育大学 国立 宮城教育大学 2015年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{AB}=6$,$\mathrm{BC}=4$,$\mathrm{CA}=5$であり,直線$\mathrm{BC}$上の点$\mathrm{D}$が$\mathrm{AD} \perp \mathrm{BC}$をみたすとする.さらに,線分$\mathrm{AC}$を$9:1$に内分する点を$\mathrm{E}$とし,直線$\mathrm{AD}$と直線$\mathrm{BE}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
秋田大学 国立 秋田大学 2015年 第2問
連立不等式$x \geqq 0$,$y \geqq 0$,$3x+y \leqq 8$,$x+3y \leqq 9$が表す領域を$A$とする.次の問いに答えよ.

(1)直線$3x+y=8$と直線$x+3y=9$の交点の座標を求めよ.また,領域$A$を図示し,その面積を求めよ.
(2)領域$A$において,$\displaystyle \frac{3}{4}x+y$の最大値と最小値を求めよ.また,そのときの$x,\ y$の値を求めよ.
(3)不等式$\displaystyle y \geqq \frac{8}{3}x^2$が表す領域と領域$A$の共通部分を領域$B$とする.領域$B$の面積を求めよ.
(4)不等式$y \leqq ax$が表す領域と領域$A$の共通部分を領域$C$とする.領域$C$の面積が領域$B$の面積と等しくなる実数$a$の値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。