タグ「交点」の検索結果

23ページ目:全1364問中221問~230問を表示)
鳥取大学 国立 鳥取大学 2015年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,$2$曲線$y=\cos x$,$y=\sin 2x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めたい.次の問いに答えよ.

(1)$2$曲線$y=\cos x$,$y=\sin 2x$の交点の$x$座標をすべて求めよ.ただし,$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$とする.
(2)体積$V$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第2問
座標平面上に原点を中心とする半径$1$の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ -1)$,$\mathrm{B}(0,\ -1)$があり,点$\mathrm{A}$を通る傾き$k$の直線$\ell$を考える.直線$\ell$は円$C$と異なる$2$点で交わるものとし,点 $\mathrm{A}$から遠い方の交点を$\mathrm{P}$,近い方の交点を$\mathrm{Q}$とする.以下の問いに答えよ.

(1)直線$\ell$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{Q}$の座標をそれぞれ$k$を用いて表せ.
(3)三角形$\mathrm{BPQ}$の面積を$k$を用いて表せ.
(4)三角形$\mathrm{BPQ}$の面積を最大にする$k$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第1問
四面体$\mathrm{OABC}$において,三角形$\mathrm{ABC}$は$1$辺の長さが$1$の正三角形であり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=2$とする.また,点$\mathrm{C}$を通り平面$\mathrm{OAB}$に垂直な直線上に点$\mathrm{D}$があり,線分$\mathrm{CD}$の中点$\mathrm{H}$は平面$\mathrm{OAB}$に含まれるとする.すなわち,点$\mathrm{D}$は平面$\mathrm{OAB}$に関して,点$\mathrm{C}$と対称な点である.
(図は省略)
$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$および$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.また,$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$で表せ.
(3)直線$\mathrm{BH}$と直線$\mathrm{OA}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{BP}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表し,$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{a}$を求めよ.さらに,$\mathrm{OP}$および$\mathrm{BP}$の長さを求めよ.
(4)$(3)$で定めた点$\mathrm{P}$に対して,四角形$\mathrm{BCPD}$の面積$S$を求めよ.また,四角錐$\mathrm{O}$-$\mathrm{BCPD}$の体積$V$を求めよ.
長崎大学 国立 長崎大学 2015年 第1問
$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=x^2-2ax+2a^2 \]
を考える.ただし,$a>0$とする.以下の問いに答えよ.

(1)放物線$C_2$の頂点の座標を$a$を用いて表せ.
(2)$2$つの放物線$C_1$,$C_2$の共通接線を$\ell$とし,$C_1$と$\ell$との接点の$x$座標を$p$,$C_2$と$\ell$との接点の$x$座標を$q$とする.$p$と$q$の値および$\ell$の方程式を,それぞれ$a$を用いて表せ.
(3)放物線$C_1$,$C_2$および接線$\ell$によって囲まれた図形の面積を$S_1$とする.$S_1$を$a$を用いて表せ.
(4)点$\displaystyle \left( -\frac{a}{2},\ \frac{a^2}{4} \right)$における$C_1$の接線を$m$とする.このとき,$m$の方程式を$a$を用いて表せ.また,$m$と接線$\ell$との交点の$x$座標を求めよ.
(5)放物線$C_1$および接線$\ell$,$m$によって囲まれた図形の面積を$S_2$とする.$S_2$を$a$を用いて表せ.さらに,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
長崎大学 国立 長崎大学 2015年 第2問
$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ 0,\ 0)$,$\mathrm{C}(0,\ 4,\ 0)$,$\mathrm{D}(0,\ 0,\ 4)$をとり,下図のように線分$\mathrm{OA}$,$\mathrm{OC}$,$\mathrm{OD}$を$3$辺とする立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.辺$\mathrm{DE}$,$\mathrm{BF}$の中点を,それぞれ$\mathrm{M}$,$\mathrm{N}$とする.以下の問いに答えよ.
(図は省略)

(1)ベクトル$\overrightarrow{\mathrm{GM}}$および$\overrightarrow{\mathrm{GN}}$を成分で表せ.
(2)$\angle \mathrm{MGN}=\theta$とする.$\cos \theta$の値を求めよ.
(3)$3$点$\mathrm{G}$,$\mathrm{M}$,$\mathrm{N}$を頂点とする三角形$\mathrm{GMN}$の面積を求めよ.
(4)三角錐$\mathrm{FGMN}$において,三角形$\mathrm{GMN}$を底面としたときの高さを求めよ.
(5)三角形$\mathrm{GMN}$を含む平面と線分$\mathrm{OF}$との交点を$\mathrm{P}$とする.このとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OF}}$を用いて表せ.
大分大学 国立 大分大学 2015年 第4問
曲線$C:4x^2+9y^2=36 (x>0)$上の点$\displaystyle \mathrm{P} \left( \frac{3 \sqrt{3}}{2},\ y_1 \right)$が第$1$象限にある.点$\mathrm{P}$における曲線$C$の接線を$\ell$とする.

(1)$y_1$の値を求めなさい.
(2)接線$\ell$の方程式を求めなさい.
(3)接線$\ell$と$x$軸との交点の$x$座標を求めなさい.
(4)曲線$C$,接線$\ell$,$x$軸で囲まれた部分の面積$S$を求めなさい.
千葉大学 国立 千葉大学 2015年 第3問
$1$辺の長さ$1$の正三角形$\mathrm{ABC}$において,$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,$\mathrm{CA}$を$1:2$に内分する点を$\mathrm{E}$,$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{F}$とし,さらに$\mathrm{BE}$と$\mathrm{CF}$の交点を$\mathrm{P}$,$\mathrm{CF}$と$\mathrm{AD}$の交点を$\mathrm{Q}$,$\mathrm{AD}$と$\mathrm{BE}$の交点を$\mathrm{R}$とする.このとき,$\triangle \mathrm{PQR}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第1問
$1$辺の長さ$1$の正三角形$\mathrm{ABC}$において,$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,$\mathrm{CA}$を$1:2$に内分する点を$\mathrm{E}$,$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{F}$とし,さらに$\mathrm{BE}$と$\mathrm{CF}$の交点を$\mathrm{P}$,$\mathrm{CF}$と$\mathrm{AD}$の交点を$\mathrm{Q}$,$\mathrm{AD}$と$\mathrm{BE}$の交点を$\mathrm{R}$とする.このとき,$\triangle \mathrm{PQR}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第2問
$1$辺の長さ$1$の正三角形$\mathrm{ABC}$において,$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,$\mathrm{CA}$を$1:2$に内分する点を$\mathrm{E}$,$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{F}$とし,さらに$\mathrm{BE}$と$\mathrm{CF}$の交点を$\mathrm{P}$,$\mathrm{CF}$と$\mathrm{AD}$の交点を$\mathrm{Q}$,$\mathrm{AD}$と$\mathrm{BE}$の交点を$\mathrm{R}$とする.このとき,$\triangle \mathrm{PQR}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。