タグ「交点」の検索結果

129ページ目:全1364問中1281問~1290問を表示)
山梨大学 国立 山梨大学 2010年 第2問
$y=x^2$を平行移動してできる放物線$C$は点$\mathrm{Q}(1,\ 1)$を通り,その軸の方程式は$x=p$で,$p<1$であるとする.点$\mathrm{Q}$における放物線$C$の接線を$\ell_1$,点$\mathrm{Q}$において$\ell_1$に直交する直線を$\ell_2$とし,$\ell_1$と$x$軸との交点を$\mathrm{A}$,$\ell_2$と$x$軸との交点を$\mathrm{B}$とする.また,点$\mathrm{Q}$の位置ベクトルを$\overrightarrow{q}=(1,\ 1)$で表し,直線$\ell_1,\ \ell_2$の方向ベクトルをそれぞれ$\overrightarrow{a}=(1,\ m),\ \overrightarrow{b}=(1,\ n)$とする.

(1)放物線$C$の方程式を$p$を使って表せ.
(2)$m$および$n$をそれぞれ$p$で表せ.
(3)$\triangle \mathrm{QAB}$の内部および周上の点を表す位置ベクトルを,実数$s,\ t$を用いて$\overrightarrow{v}=\overrightarrow{q}+s\overrightarrow{a}+t\overrightarrow{b}$と表すとき,点$(s,\ t)$の存在する領域を図示せよ.
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)$4$個のさいころを同時に投げるとき,目の和が$7$になる確率を求めよ.
(5)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}=75^\circ,\ \angle \mathrm{B}=60^\circ,\ \mathrm{AB}=1$とする.頂点$\mathrm{A}$を通り辺$\mathrm{BC}$に垂直な直線と$\triangle \mathrm{ABC}$の外接円との交点を$\mathrm{P}$とする.このとき,線分$\mathrm{AP}$の長さを求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)4個のさいころを同時に投げるとき,目の和が7になる確率を求めよ.
(5)$\triangle$ABCにおいて,$\angle \text{A}=75^\circ,\ \angle \text{B}=60^\circ,\ \text{AB}=1$とする.頂点Aを通り辺BCに垂直な直線と$\triangle$ABCの外接円との交点をPとする.このとき,線分APの長さを求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第2問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第1問
次の各問いに答えよ.

(1)正の実数$a$に関する次の各命題の真偽を述べよ.また,真ならば証明し,偽ならば反例をあげよ.

(2)$a$が自然数ならば$\sqrt{a}$は無理数である.
(3)$a$が無理数ならば$\sqrt{a}$も無理数である.

(4)4個のさいころを同時に投げるとき,目の和が7になる確率を求めよ.
(5)$\triangle$ABCにおいて,$\angle \text{A}=75^\circ,\ \angle \text{B}=60^\circ,\ \text{AB}=1$とする.頂点Aを通り辺BCに垂直な直線と$\triangle$ABCの外接円との交点をPとする.このとき,線分APの長さを求めよ.
愛知教育大学 国立 愛知教育大学 2010年 第4問
曲線$\displaystyle C:y=\frac{1}{1+x^2}$と直線$\displaystyle \ell:y=\frac{1}{2}x$を考える.

(1)曲線$C$と直線$\ell$との交点の座標を求めよ.
(2)曲線$C$と直線$\ell$および$y$軸によって囲まれる図形を,$y$軸のまわりに1回転してできる回転体の体積$V$を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸によって囲まれる図形を,$x$軸のまわりに1回転してできる回転体の体積$W$を求めよ.
山口大学 国立 山口大学 2010年 第3問
$a,\ b$は$a<b$を満たす実数とする.放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$においてそれぞれ接線を引く.この$2$つの接線の交点を$\mathrm{P}(p,\ q)$とする.このとき,次の問いに答えなさい.

(1)$p,\ q$を$a,\ b$を用いて表しなさい.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$が$\displaystyle \angle \mathrm{APB}=\frac{\pi}{4}$を満たしながらこの放物線上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めなさい.
(3)(2)の条件の下で,この放物線と$2$つの接線で囲まれた図形の面積を$q$を用いて表しなさい.
東京農工大学 国立 東京農工大学 2010年 第1問
Oを原点とする座標空間にある,中心C$(1,\ 1,\ \sqrt{10})$,半径$3\sqrt{3}$の球面を$S$とする.次の問いに答えよ.

(1)$S$と$x$軸の正の部分との交点をPとし,$S$と$y$軸の正の部分との交点をQとする.P,Qの座標を求めよ.
(2)2点O,Cを通る直線と$S$との交点のうち,$z$座標が正であるものをRとする.Rの座標を求めよ.
(3)四面体OPQRの体積$V$を求めよ.
(4)4点O,P,Q,Rを通る球面の半径$r_1$を求めよ.
(5)四面体OPQRに内接する球面の半径を$r_2$とする.このとき,$\displaystyle \frac{r_1}{r_2}$の値を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点$\mathrm{C} \displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点$\mathrm{N}(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,$\mathrm{O}$は原点を表すものとする.

(1)$x$軸上に点$\mathrm{P}(x,\ 0)$をとり,直線$\mathrm{NP}$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に$2$点$\mathrm{P}_1(x_1,\ 0)$,$\mathrm{P}_2(x_2,\ 0)$をとる.直線$\mathrm{NP}_1$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_1$とし,直線$\mathrm{NP}_2$と円$S$との交点のうち,$\mathrm{N}$と異なるものを$\mathrm{Q}_2$とする.このとき,$x_1 x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
鹿児島大学 国立 鹿児島大学 2010年 第3問
座標平面において,点C$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とし,半径が$\displaystyle \frac{1}{2}$の円を$S$とする.$S$上に点N$(0,\ 1)$をとり,$\overrightarrow{\mathrm{ON}}=\overrightarrow{n}$とする.このとき,次の各問いに答えよ.ただし,Oは原点を表すものとする.

(1)$x$軸上に点P$(x,\ 0)$をとり,直線NPと円$S$との交点のうち,Nと異なるものをQとする.$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$とおき,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OQ}}=a \overrightarrow{p}+b \overrightarrow{n}$の形で表したとき,$a,\ b$を$x$で表せ.
(2)$x$軸上に2点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0)$をとる.直線NP$_1$と円$S$との交点のうち,Nと異なるものをQ$_1$とし,直線NP$_2$と円$S$との交点のうち,Nと異なるものをQ$_2$とする.このとき,$x_1x_2=-1$が成り立っていれば
\[ \overrightarrow{\mathrm{CQ}_1}+\overrightarrow{\mathrm{CQ}_2}=\overrightarrow{\mathrm{0}} \]
が成立することを証明せよ.ただし,$\overrightarrow{\mathrm{0}}$は零ベクトルを表すものとする.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。