タグ「交点」の検索結果

128ページ目:全1364問中1271問~1280問を表示)
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
群馬大学 国立 群馬大学 2010年 第4問
$\triangle$OABにおいて辺OAを$1:2$に内分する点をP,線分PBを$s:1-s$に内分する点をQとする.ただし,$0<s<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ s$を用いて表せ.
(2)線分OQの延長と辺ABの交点が辺ABを$3:4$に内分するときの$s$の値を求めよ.
(3)$\triangle$OABを$\text{OA}=\text{OB}$の直角二等辺三角形とし,その重心をGとする.線分GQの長さを最小にするときの$s$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第2問
座標平面の$x$軸の正の部分を始線にとり,角${\theta_n}^\circ \geqq 0 \ $(度数法)の動径と単位円との交点を$\mathrm{P}_n$とする.$\theta_1=0$のとき,次の問いに答えよ.

(1)$\{ \theta_n \}$は等差数列とする.$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_{10}$が単位円の周上を正の向きにちょうど$1$周して$\mathrm{P}_{10}=\mathrm{P}_1$となるとき,数列$\{ \theta_n \}$の公差を求めよ.
(2)$\{ \theta_n \}$は,$\theta_{n+1}-\theta_n=n+d$を満たす数列とする.$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_k \ (k \geqq 2)$が単位円の周上を正の向きにちょうど$1$周して$\mathrm{P}_k=\mathrm{P}_1$となるとき,$d$を$k$を用いて表せ.
(3)$\{ \theta_n \}$は,(2)の数列とする.$k=6$のとき,$\mathrm{P}_n=\mathrm{P}_1$を満たす$n \ (n \geqq 7)$をひとつ求めよ.
群馬大学 国立 群馬大学 2010年 第4問
各点の座標が$(x,\ y,\ z)$で表される空間で,ある立方体の3頂点がA$(2,\ 2,\ 3)$,B$(2,\ 0,\ 1)$,C$(6,\ 0,\ 1)$であるとする.

(1)2頂点A,Cを通る直線と$xy$平面の交点をPとするとき,線分APの長さを求めよ.
(2)この立方体の体積を求めよ.
(3)この立方体の頂点Xで,$\angle \text{BXC}=60^\circ$となるものすべてについてそれらの座標を求めよ.
宇都宮大学 国立 宇都宮大学 2010年 第6問
座標平面上に,点$(0,\ 1)$を中心とする半径$1$の円と点$\mathrm{P}(0,\ h) \ (0<h<2)$がある.点$\mathrm{P}$を通る直線$y=h$と円との交点で第$1$象限にあるものを$\mathrm{Q}$とする.曲線$C:y=\alpha x^2$は点$\mathrm{Q}$を通るとし,$y$軸と曲線$C$および線分$\mathrm{PQ}$で囲まれた部分を図形$\mathrm{A}$とする.次の問いに答えよ.

(1)$\alpha$を$h$を用いて表せ.
(2)図形$\mathrm{A}$の面積$S$を$h$の式で表し,$S$の最大値を求めよ.
(3)図形$\mathrm{A}$を$y$軸の周りに$1$回転してできる立体の体積$V$を$h$の式で表し,$V$の最大値を求めよ.
(4)$S,\ V$は,それぞれ(2),(3)で求めたものとする.$\displaystyle X=\frac{V}{2\pi S}$とおくとき,$X$の最大値を求めよ.
茨城大学 国立 茨城大学 2010年 第2問
$a$を$0$でない実数とする.
\begin{align}
& C_1 : y = x^2+(a+1)x-a(2a+1) \nonumber \\
& C_2 : y = -x^2+(3a+1)x+a(2a-1) \nonumber
\end{align}
で表される曲線$C_1$と曲線$C_2$について,以下の各問に答えよ.

(1)$C_1$と$C_2$が異なる$2$交点をもつことを示せ.
(2)$C_1$と$C_2$の$2$交点を通る直線$\ell(a)$の方程式を求めよ.また,$\ell(a)$が$a$の値に関係なく必ず通る定点$\mathrm{P}$の座標を求めよ.
(3)(2)で求めた定点$\mathrm{P}$が$C_1$と$C_2$の$2$交点を結んだ線分上にあるような$a$の値の範囲を求めよ.
茨城大学 国立 茨城大学 2010年 第1問
以下の各問に答えよ.

(1)平行四辺形$\mathrm{ABCD}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{E}$,直線$\mathrm{AE}$と対角線$\mathrm{BD}$との交点を$\mathrm{F}$,直線$\mathrm{AE}$と直線$\mathrm{CD}$との交点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{AB}}$を$\overrightarrow{a}$で,$\overrightarrow{\mathrm{AD}}$を$\overrightarrow{b}$で表すとき,$3$つのベクトル$\overrightarrow{\mathrm{AE}},\ \overrightarrow{\mathrm{AF}},\ \overrightarrow{\mathrm{AG}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)関数$g(x)$を次式で定める.
\[ g(x)=\frac{1}{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \{ x \cos t+(1-x) \sin t \}^2 \, dt \]
このとき,$g(x)$の最小値を求めよ.
茨城大学 国立 茨城大学 2010年 第2問
$p$を$0<p<1$を満たす有理数の定数とし,関数$f(x)$を$f(x)=|x|^p$と定める.以下の各問に答えよ.

(1)曲線$y=f(x)$の概形を描け.
(2)$a$を$0$でない実数の定数とするとき,点$(a,\ f(a))$における曲線$y=f(x)$の接線の方程式を求めよ.また,接線と$x$軸の交点の$x$座標を求めよ.
(3)数列$\{a_n\}$を次のように定める:$a_1=1$とし,$n \geqq 2$のとき$a_n$を点$(a_{n-1},\ f(a_{n-1}))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標とする.このとき一般項$a_n$を$n$と$p$を用いて表せ.
(4)(3)で求めた数列$\{a_n\}$について,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線と,$x$軸,および直線$x=a_n$とで囲まれた部分の面積を$T_n$とする.$T_n$を$n$と$p$を用いて表せ.
(5)(4)の$T_n \ (n=1,\ 2,\ 3,\ \cdots)$について,無限級数$T_1+T_2+T_3+\cdots$が収束する$p$の範囲を求めよ.また,収束するときの無限級数の値を求めよ.
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。