タグ「交点」の検索結果

122ページ目:全1364問中1211問~1220問を表示)
名古屋大学 国立 名古屋大学 2010年 第1問
座標空間に8点
\begin{eqnarray}
& & \text{O}(0,\ 0,\ 0),\ \text{P}(1,\ 0,\ 0),\ \text{Q}(1,\ 1,\ 0),\ \text{R}(0,\ 1,\ 0), \nonumber \\
& & \text{A}(0,\ 0,\ 1),\ \text{B}(1,\ 0,\ 1),\ \text{C}(1,\ 1,\ 1),\ \text{D}(0,\ 1,\ 1) \nonumber
\end{eqnarray}
をとり,線分BCの中点をMとする.線分RD上の点をN$(0,\ 1,\ t)$とし,3点 O,M,Nを通る平面と線分PDおよび線分PBとの交点をそれぞれK,Lとする.

(1)Kの座標を$t$で表せ.
(2)四面体OKLPの体積を$V(t)$とする.Nが線分RD上をRからDまで動くとき,$V(t)$の最大値と最小値およびそれらを与える$t$の値をそれぞれ求めよ.
信州大学 国立 信州大学 2010年 第1問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たして
いる.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| =\sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+ \overrightarrow{\mathrm{OB}}+ \overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
筑波大学 国立 筑波大学 2010年 第2問
3つの曲線
\begin{eqnarray}
& & C_1 : y = \sin x \quad \left( 0 \leqq x < \frac{\pi}{2} \right) \nonumber \\
& & C_2 : y = \cos x \quad \left( 0 \leqq x < \frac{\pi}{2} \right) \nonumber \\
& & C_3 : y = \tan x \quad \left( 0 \leqq x < \frac{\pi}{2} \right) \nonumber
\end{eqnarray}
について以下の問いに答えよ.

(1)$C_1$と$C_2$の交点,$C_2$と$C_3$の交点,$C_3$と$C_1$の交点のそれぞれについて$y$座標を求めよ.
(2)$C_1,\ C_2,\ C_3$によって囲まれる図形の面積を求めよ.
東京大学 国立 東京大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上の曲線
\[ C:\quad y=\frac{1}{2}x+\sqrt{\frac{1}{4}x^2+2} \]
と,その上の相異なる$2$点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を考える.

(1)$\mathrm{P}_i \ (i=1,\ 2)$を通る$x$軸に平行な直線と,直線$y=x$との交点を,それぞれ$\mathrm{H}_i \ (i=1,\ 2)$とする.このとき$\triangle \mathrm{OP}_1 \mathrm{H}_1$と$\triangle \mathrm{OP}_2 \mathrm{H}_2$の面積は等しいこと示せ.
(2)$x_1<x_2$とする.このとき$C$の$x_1\leqq x\leqq x_2$の範囲にある部分と,線分$\mathrm{P}_1 \mathrm{O}$,$\mathrm{P}_2 \mathrm{O}$で囲まれる図形の面積を,$y_1$,$y_2$を用いて表せ.
名古屋大学 国立 名古屋大学 2010年 第1問
$xy$平面上の長方形ABCDが次の条件(a),(b),(c)を満たしているとする.

\mon[(a)] 対角線ACとBDの交点は原点Oに一致する.
\mon[(b)] 直線ABの傾きは2である.
\mon[(c)] Aの$y$座標は,B,C,Dの$y$座標より大きい.

このとき,$a>0,\ b>0$として,辺ABの長さを$2\sqrt{5}a$,BCの長さを$2\sqrt{5}b$とおく.

(1)A,B,C,Dの座標を$a,\ b$で表せ.
(2)長方形ABCDが領域$x^2+(y-5)^2 \leqq 100$に含まれるための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
信州大学 国立 信州大学 2010年 第2問
平面上に4点O,A,B,Cがあり,ベクトル$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OC}}$は次の条件を満たしている.
\begin{eqnarray}
& & |\overrightarrow{\mathrm{OA}}| = 1,\ |\overrightarrow{\mathrm{OB}}| = \sqrt{2},\ |\overrightarrow{\mathrm{OC}}| = \sqrt{3} \nonumber \\
& & \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}} = \overrightarrow{\mathrm{0}} \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OB}}$であることを示せ.
(2)AからBCに下ろした垂線とBCの交点をHとする.AHの長さを求めよ.
金沢大学 国立 金沢大学 2010年 第4問
$a \ (a>0)$を定数とし,$f(x)=2a \log x - (\log x)^2$とする.関数$y = f(x)$のグラフは,$x$軸と点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0) \ (x_1<x_2)$で交わっている.次の問いに答えよ.

(1)$x_1,\ x_2$の値を求めよ.また,$y = f(x)$の最大値と,そのときの$x$の値を求めよ.
(2)点P$_1$,P$_2$における$y=f(x)$の接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1$と$\ell_2$の交点の$x$座標を$X(a)$と表すとき,$\displaystyle \lim_{a \to \infty} X(a)$を求めよ.
(3)$a = 1$とするとき,$y = f(x)$のグラフと$x$軸で囲まれた図形の面積を求めよ.
高知大学 国立 高知大学 2010年 第2問
三角形OABにおいて,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とし,点CとDを$\overrightarrow{\mathrm{OC}}=2\overrightarrow{a},\ \overrightarrow{\mathrm{OD}}=3\overrightarrow{b}$によりそれぞれ定める.また,線分ADとBCの交点をEとする.このとき,次の問いに答えよ.

(1)$\text{AE}:\text{AD}=t:1 \ (0<t<1)$とするとき,$\overrightarrow{\mathrm{OE}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\text{BE}:\text{BC}=s:1 \ (0<s<1)$とするとき,$\overrightarrow{\mathrm{OE}}$を$s,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)(1)と(2)を利用することにより,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(4)OE,AB,CDの中点をそれぞれP,Q,Rとするとき,$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(5)$\displaystyle \frac{\text{PR}}{\text{PQ}}$の値を求めよ.
岩手大学 国立 岩手大学 2010年 第1問
曲線$y=-x^2+3x$について,以下の問いに答えよ.

(1)曲線$y=-x^2+3x$と$x$軸で囲まれる図形の面積を求めよ.
(2)$a$を$0<a<3$をみたす定数とする.このとき,直線$y=ax$と曲線$y=-x^2+3x$との交点の$x$座標を求めよ.
(3)(1)の図形の面積を二等分する原点を通る直線を求めよ.
名古屋大学 国立 名古屋大学 2010年 第2問
関数$f(x)$を
\[ f(x)=\left\{
\begin{array}{l}
1 \quad (x \geqq 0) \\
0 \quad (x<0)
\end{array}
\right. \]
により定める.

(1)$a,\ b$は実数とする.$y = ax + b$のグラフと$y = f(x)$のグラフがちょうど2つの交点をもつための$a,\ b$に対する条件を求めよ.
(2)$p,\ q$は実数で$p>0$とする.$y = x^3 + 6px^2 + 9p^2x + q$のグラフと$y = f(x)$のグラフがちょうど4つの交点をもつための$p,\ q$に対する条件を求め,$pq$平面上に図示せよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。