タグ「交点」の検索結果

119ページ目:全1364問中1181問~1190問を表示)
吉備国際大学 私立 吉備国際大学 2011年 第2問
$\triangle \mathrm{ABC}$で,$\mathrm{AB}=8$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\angle \mathrm{BAC}$の二等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{ABC}$の重心$\mathrm{G}$に対し,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{H}$とする.次の問題に答えよ.

(1)$\mathrm{BD}$の長さを求めよ.
(2)$\mathrm{DH}$の長さを求めよ.
(3)$\mathrm{AG}$の長さを求めよ.
首都大学東京 公立 首都大学東京 2011年 第2問
座標空間の3点A$(1,\ 2,\ 2)$,B$(2,\ 1,\ 1)$,C$(2,\ 4,\ 2)$を通る平面を$\alpha$とする.点D$(0,\ 2,\ 1)$を通り,ベクトル$\overrightarrow{a}=(1,\ 1,\ 1)$に平行な直線を$\ell_1$とする.また点Dを通り,ベクトル$\overrightarrow{b}=(-1,\ -1,\ 1)$に平行な直線を$\ell_2$とする.このとき,以下の問いに答えなさい.

(1)$\ell_1$と$\alpha$の交点をEとし,$\ell_2$と$\alpha$の交点をFとする.E,Fの座標を求めなさい.
(2)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DF}}$のなす角を$\theta \ (0 \leqq \theta \leqq \pi)$とおくとき,$\cos \theta$の値を求めなさい.
(3)$\triangle$DEFの面積を求めなさい.
高崎経済大学 公立 高崎経済大学 2011年 第3問
放物線$y=-(x-2)^2+1$上に点Pがある.点Pの$x$座標を$a$とし,$\displaystyle \frac{1}{2} \leqq a \leqq \frac{3}{2}$とする.以下の問に答えよ.

(1)放物線上の点Pにおける接線の方程式を求めよ.
(2)点Pから$y$軸に下ろした垂線の足を点Qとする.また,(1)で求めた接線と$y$軸の交点を点Rとする.$\triangle$PQRの面積$S$を$a$で表せ.点Pから$y$軸に下ろした垂線と$y$軸との交点のことである.
(3)(2)で求めた面積$S$が最大になるときの$a$の値とその面積を求めよ.
高知工科大学 公立 高知工科大学 2011年 第2問
$\triangle$ABCの頂点を通らない直線$\ell$が,辺AC,辺BCのB方向への延長線,および辺ABと,それぞれ点P,Q,Rで交わり,
\[ \text{AP}:\text{PC}=\alpha:1,\quad \text{CQ}:\text{QB}=\beta:1 \]
であるとする.$\overrightarrow{\mathrm{CA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{CB}}=\overrightarrow{b}$として,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を$\alpha,\ \beta,\ \overrightarrow{a},\ \overrightarrow{b}$で表し,等式$\displaystyle \frac{\text{AP}}{\text{PC}} \cdot \frac{\text{CQ}}{\text{QB}} \cdot \frac{\text{BR}}{\text{RA}}=1$を証明せよ.
(2)$\triangle$QRB,$\triangle$BCR,$\triangle$APRの面積比が$1:2:3$のとき,$\triangle$APRと$\triangle$CPRの面積比を求めよ.
(3)(2)のとき,直線CRと直線AQの交点をDとする.線分の長さの比$\text{AD}:\text{QD}$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第1問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$を通り,放物線のこの点における接線に垂直な直線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$における法線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
平面上に三角形OABがあり,$\text{OA}=3,\ \text{OB}=2,\ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-2$であるとする.線分OAを$2:1$の比に内分する点をCとする.また,線分ABを$t:(1-t)$の比に内分する点をPとし,直線OPと直線BCの交点をQとする.ただし,$t$は$0<t<1$を満たす実数である.このとき,次の問いに答えよ.

(1)三角形OABの面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$および$t$を用いて表せ.また,$\overrightarrow{\mathrm{OQ}}=k\overrightarrow{\mathrm{OP}}$となる実数$k$を$t$を用いて表せ.
(3)三角形OCQの面積が$\sqrt{2}$になるときの$t$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
平面上の原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$と実数$p \ (0<p<1)$に対して,点$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\cdots$の位置ベクトルを
\begin{eqnarray}
& & \overrightarrow{\mathrm{OP_1}}=\overrightarrow{\mathrm{OA}},\quad \overrightarrow{\mathrm{OP_2}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}},\quad \overrightarrow{\mathrm{OP_3}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}, \nonumber \\
& & \overrightarrow{\mathrm{OP_4}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}+p^3\overrightarrow{\mathrm{OA}}, \nonumber \\
& & \overrightarrow{\mathrm{OP_5}}=\overrightarrow{\mathrm{OA}}+p\overrightarrow{\mathrm{AB}}+p^2\overrightarrow{\mathrm{BO}}+p^3\overrightarrow{\mathrm{OA}}+p^4\overrightarrow{\mathrm{AB}},\ \cdots \nonumber
\end{eqnarray}
によって定義する.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP_{3n}}}$を$n,\ p,\ \overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)$\displaystyle \lim_{n \to \infty}\overrightarrow{\mathrm{OP_{3n}}}=\overrightarrow{\mathrm{OP}}$とする.直線$\mathrm{OP}$と直線$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$は線分$\mathrm{AB}$をどのような比に分けるか答えよ.
(3)点$\mathrm{P}$は線分$\mathrm{OQ}$をどのような比に分けるか答えよ.
愛知県立大学 公立 愛知県立大学 2011年 第2問
方程式$y=-x^2+2x+8$で表される放物線を$C_1$とする.放物線$C_1$と$x$軸とで囲まれた図形の内部にある円で,放物線$C_1$と$x$軸に$3$点で接するものを$C_2$とする.放物線$C_1$と$x$軸との$2$つの交点,および放物線$C_1$の頂点を通る円を$C_3$とする.このとき,以下の問いに答えよ.

(1)円$C_2$の方程式を求めよ.
(2)円$C_3$の面積が円$C_2$の面積の何倍になるか求めよ.
(3)放物線$C_1$の頂点を通り,円$C_2$に接する$2$つの接線の方程式を求めよ.
愛知県立大学 公立 愛知県立大学 2011年 第3問
曲線$C_1:y=p \cos x$,$C_2:y=q \sin x$について,以下の問いに答えよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2},\ p>0,\ q>0$である.

(1)曲線$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$p,\ q$で表せ.
(2)曲線$C_1,\ C_2$と$x$軸で囲まれた部分の面積を$S$とするとき,$S$を$p,\ q$で表せ.
(3)$p,\ q$が$p^2+q^2=4$を満たすとき,(2)で求めた面積$S$の最大値を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。